Algoritma Deep Learning dalam Memprediksi Hasil Panen Padi di Kabupaten Lamongan

Retno Wardhani¹, Nur Nafi'iyah^{2*}), Muhammad Ali Haydar³

^{1,2}Dosen Teknik Informatika, Fakultas Komputer, Universitas Islam Lamongan
 ³Mahasiswa Teknik Informatika, Fakultas Teknik, Universitas Islam Lamongan
 ^{1,2,3}Jalan Veteran 53A Lamongan, 62211, Indonesia
 email: ¹retzno@yahoo.com, ²mynaff26@gmail.com, ³alyhaydar01@gmail.com

Abstract - Based on data, bps.go.id harvest from the 2nd year 018 to 2019 decreased about an 7.76%. The government must constantly analyze the rice yields of farmers in Indonesia to determine whether these crops can meet the Indonesian people's primary food needs. Research this will predict rice yields in Lamongan. This study aims to assist the government in overcoming the occurrence of significant food shortages in Lamongan. A system that can be used as a reference tool to assist in policy or rule in the district Lamongan. This research proposes deep learning algorithms to predict the harvest based on the land area (m²), spacing (cm), the type of rice, the number of times to fertilize, fertilizer, and crop yields (quintals). The dataset used in the study was collected through questionnaires. Questionnaires were distributed via a google form and contained as many as 390 rows of data. Some of the data produced were incorrect, so the processing was carried out. The results of data processing, the data that can be used are 380 rows. The proposed architectural model's test results show that the loss values of MSE, MAE, or MAPE are the same. The MSE, MAE, and MAPE values are 2939977.418, 301,788, and 83,798, respectively.

Abstrak - Berdasarkan data bps.go.id menunjukkan hasil panen padi dari tahun 2018 ke 2019 mengalami penurunan sekitar 7.76%. Pemerintah harus selalu menganalisa terkait hasil panen padi para petani di Indonesia agar dapat mengetahui apakah hasil panen tersebut dapat mencukupi kebutuhan bahan pangan utama masyarakat Indonesia. Penelitian ini akan melakukan prediksi hasil panen padi di kabupaten Lamongan. Tujuan penelitian ini untuk membantu pemerintah dalam mengatasi terjadinya kekurangan stok pangan utama di Lamongan. Sistem yang dibangun dapat digunakan sebagai acuan atau alat untuk membantu dalam kebijakan atau aturan di kabupaten Lamongan. Penelitian ini mengusulkan algoritma deep learning untuk memprediksi hasil panen padi berdasarkan luas tanah (m²), jarak tanam (cm), jenis padi, jumlah berapa kali memupuk, jenis pupuk, dan hasil panen (kwintal). Dataset yang digunakan dalam penelitian dikumpulkan melalu penyebaran angket. Kuesioner atau angket disebarkan melalui google form, dan terkumpul sebanyak 390 baris data. Data yang dihasilkan ada yang kurang tepat sehingga dilakukan proses pengolahan. Hasil pengolahan, data yang dapat digunakan menjadi 380 baris. Hasil ujicoba dari model arsitektur yang diusulkan menunjukkan bahwa nilai loss MSE, MAE ataupun MAPE sama. Secara berturut-turut nilai MSE, MAE dan MAPE adalah 2939977.418, 301.788, dan 83.798.

Kata Kunci – deep learning, prediksi, hasil panen padi.

*) **penulis korespondensi**: Nur Nafi'iyah Email: mynaff26@gmail.com

I. PENDAHULUAN

Berdasarkan data bps.go.id menunjukkan hasil panen padi dari tahun 2018 ke 2019 mengalami penurunan sekitar 7.76%. Pemerintah harus selalu menganalisa terkait hasil panen padi para petani di Indonesia agar dapat mengetahui apakah hasil panen tersebut dapat mencukupi kebutuhan bahan pangan utama masyarakat Indonesia. Beberapa penelitian berusaha membantu pemerintah dalam upaya mengatasi kekurangan stok bahan pangan utama padi di Indonesia. Penelitian yang dilakukan Agus dan kawan-kawan memprediksi hasil panen padi di Indonesia dari data pertanian.go.id dengan metode SVM. Hasil prediksi panen padi dengan metode SVM nilai MAPE 6635.53% [1]. Algoritma SVM merupakan salah satu algoritma yang ada dalam neural network. Algoritma neural network mempunyai nilai akurasi yang baik dalam melakukan prediksi data. Neural network mempunyai beberapa metode, diantaranya SVM dan Backpropagation [2], [3]. Kedua metode tersebut mempunyai kinerja yang baik dibuktikan dengan nilai RMSE dalam memprediksi produktivitas padi sebesar 8.2126. Neural network Backpropagation dengan lapisan layer hidden lebih dari satu termasuk dalam algoritma deep learning [4], [5]. Neural network merupakan metode yang berbasis jaringan syaraf otak manusia, terdapat neuron neuron yang terhubung dengan saluran menuju ke pusat syaraf atau otak. Metode neural network bekerja dengan mengenali pola dan menghitung nilai error serta memperbaiki bobot, hasil akhir dari pembelajaran atau mengenali pola adalah bobot. Metode neural network mempunyai nilai akurasi yang baik dalam memprediksi atau mengklasifikasi [1], [3], [6].

Berdasarkan latar belakang di atas, penelitian ini akan melakukan prediksi hasil panen padi di kabupaten Lamongan. Tujuan penelitian ini untuk membantu pemerintah dalam mengatasi terjadinya kekurangan stok pangan utama di Lamongan. Sistem yang dibangun dapat digunakan sebagai acuan atau alat untuk membantu dalam kebijakan atau aturan di kabupaten Lamongan. Metode penelitian sebelumnya, dalam memprediksi hasil panen padi adalah neural network SVM, neural network Backpropagation, Regresi Linear, ANFIS, Logika Fuzzy, Bayesian Network, dan RNN. Berdasarkan acuan metode sebelumnya, maka penelitian ini akan menggunakan neural network deep learning.

II. PENELITIAN YANG TERKAIT

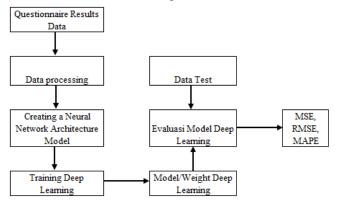
Penelitian yang melakukan prediksi hasil panen padi atau produksi padi atau poduktivitas padi dengan metode neural

network telah banyak yang melakukan. Sedangkan penelitian ini mengusulkan memprediksi hasil panen padi di kabupaten Lamongan, dengan data hasil pengumpulan melalui goole form. Misalnya, penelitian terkait memprediksi hasil panen padi dengan metode SVM. Akurasi dari algoritma SVM dalam memprediksi hasil panen adalah MAPE 6635.53% dan RMSE 0.017 [1]. Memprediksi produktivitas padi dengan metode neural network Backpropagation. Kinerja dari algoritma Backpropagation dalam memprediksi produktivitas padi baik dibuktikan dengan nilai RMSE 8.2126 [2]. Memprediksi hasil panen padi dengan Regresi Linear. Hasil validasi model yang digunakan menggunakan RMSE dengan nilai 0.432 [7]. Memprediksi produksi padi di kabupaten Bantul dengan metode Regresi Linear. Data yang digunakan tahun 2009-2017 dengan validasi menggunakan MAD nilainya 0.101 [8]. Memprediksi produksi padi berdasarkan variabel jumlah pertumbuhan penduduk menggunakan metode Regresi Linear, ujicoba diukur dengan MAE [9]. Memprediksi luas panen dan produktivitas padi berdasarkan data tahun 2001-2012 dengan metode ANFIS. Ujicoba diukur dengan MAPE nilainya 3.122% [10]. Memprediksi jumlah produksi padi di Sulawesi dengan metode Fuzzy berdasarkan data tahun 2014-2015. Hasil akurasi diukur menggunakan MAPE dengan nilai 5.51% [11]. Memprediksi produksi padi di kabupaten dan kota Jawa Timur, data yang digunakan mulai tahun 2007-2017. Kabupaten sebanyak 29 dan 6 kota. Cara kerja diukur menggunakan MAD, MSE, MAPE, dengan nilai secara berurutan 44.39, 18.29, 16.68% Memprediksi hasil panen padi berdasarkan cuaca, dengan tujuan sistem dapat membantu petani agar tidak mengalami kerugian [13]. Sistem kecerdasan buatan otomatis yang dapat meningkatkan produktivitas padi. Harapannya agar dapat memenuhi ketahanan pangan [14]. Memprediksi produktivitas padi berdasarkan parameter cuaca dengan metode RNN (Recurrent Neural Network) dan Backpropagation [15]. Membangun sistem untuk mengevaluasi metode SVM, Bayesian Network, dan Backpropagation dalam memprediksi produktivitas padi berdasarkan cuaca [16].

METODE PENELITIAN

Penelitian ini mengusulkan algoritma deep learning untuk memprediksi hasil panen padi berdasarkan luas tanah (m²), jarak tanam (cm), jenis padi, jumlah berapa kali memupuk, jenis pupuk, dan hasil panen (kwintal). Tahapan dalam penelitian ini dalam Gambar 1. Gambar 1 menjelaskan tahapan melakukan prediksi hasil panen padi adalah mengolah data terlebih dahulu, membuat model, melakukan training dan evaluasi model. Cara mengevaluasi model dengan menghitung nilai error dengan rumus MSE, MAE, MAPE dalam Persamaan 1 sampai 3. Dari Persamaan 1 sampai 3 menjelaskan y adalah data aktual, dan \hat{y} adalah data hasil prediksi.

$$MSE = \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N}$$
 (1)


$$MSE = \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N}$$

$$MAE = \frac{\sum_{i=1}^{N} |y_i - \hat{y}_i|}{N}$$
(1)

$$MAPE = \frac{\sum\limits_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right|}{N}$$
 (3)

Langkah dalam penelitian ini:

- a) Data hasil pengumpulan melalui google form diolah terlebih dahulu, mulai dari memilih variabel yang digunakan hanya luas tanah (m²), jarak tanam antar padi (cm), jenis padi, jumlah berapa kali memupuk, jenis pupuk, dan hasil panen padi.
- b) Data dengan variabel sebanyak 6 ditentukan variabel input ada 5, yaitu luas tanah (m²), jarak tanam antar padi (cm), jenis padi, jumlah berapa kali memupuk, jenis pupuk, dan menentukan variabel output adalah hasil panen padi.
- c) Melakukan konversi data yang dalam bentuk teks atau kategori ke angka dengan menggunakan fungsi pelabelan, variabel yang berupa teks atau kategori adalah jenis padi dan jenis pupuk yang digunakan.
- d) Data yang sudah dalam bentuk angka kemudian dilakukan training dengan menggunakan model yang pertama, dan model yang kedua.
- e) Tahap evaluasi model. Hasil dari training adalah model atau bobot, sebelum bobot atau model digunakan perlu dilakukan evaluasi dengan menghitung nilai MSE, MAE, dan MAPE seperti dalam Persamaan 1 sampai 3.

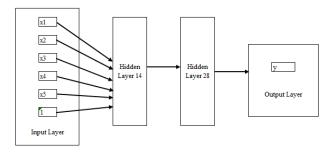
Gbr. 1 Diagram Alur Penelitian

A. Database

Dataset yang digunakan dalam penelitian dikumpulkan melalu penyebaran angket. Pertanyaan dari angket adalah: alamat, jenis kelamin, usia, luas tanah dalam satuan m², jarak tanam padi dalam satuan cm, jenis padi yang ditanam, jumlah berapa kali memupuk, jenis pupuk, dan berapa hasil panen padi dalam satuan kwintal. Kuesioner atau angket disebarkan melalui google form, dan terkumpul sebanyak 390 baris data. Dalam Gambar 1 data yang dihasilkan ada yang kurang tepat sehingga dilakukan proses pengolahan. Proses pengolahan data terdiri dari menghapus data yang tidak diisi atau nol, dan yang jumlah atau nilainya tidak masuk akal. Hasil pengolahan data yang dapat digunakan menjadi 380 baris. Data tersebut selanjutnya dicek yang awalnya dalam bentuk kategori kemudian dikonversi menjadi angka. Variable yang kategori adalah jenis padi yang ditanam, dan jenis pupuk yang digunakan. Data awal hasil dari penyebaran kuesioner melalui google form kemudian diolah, dan memilih kolom mana yang harus dikonversi menjadi angka.

TABEL I
CONTOH DATASET

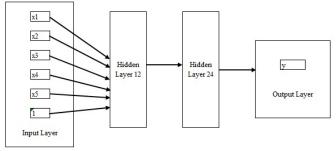
Luas tanah (m²)	Jarak antar padi yang ditanam (cm)	Jenis padi	Berapa kali memupuk padi	Jenis pupuk	Jumlah hasil panen (kwintal)
300	8	2	3	1	11
550	28	3	3	1	70
550	28	3	3	1	70
5000	30	4	2	3	50
200	15	1	2	1	16
150	20	1	3	1	10
5	20	2	2	5	1
5	20	2	2	5	1
250	25	6	2	1	20
165	25	1	2	1	150
220	25	1	2	1	175


Variable jenis padi yang ditanam dikonversi menjadi angka, misalnya Serang menjadi 1, IR 64 dikonversi 2, IR 32 dikonversi 3, IR 42 dikonversi 4, Hibrida dikonversi 5, dan jenis lainnya dikonversi menjadi 6. Variable lain yang awalnya dalam kategori dan dikonversi ke angka adalah jenis pupuk, misalnya proses konversi jenis pupuk Urea menjadi 1, Za menjadi 2, Phonska menjadi 3, Triple menjadi 4, dan lainnya menjadi 5. Tabel I menjelaskan hasil data yang sudah diolah, variable input yang digunakan dalam penelitian ini adalah luas tanah, jarak tanam, jenis padi, jumlah memupuk, jenis pupuk, dan variable output adalah jumlah hasil panen.

B. Metode yang Diusulkan

Penelitian ini mengusulkan 2 model arsitektur neural network deep learning. Model arsitektur neural network yang diusulkan mengacu pada penelitian Bappa Das [13], dan Andi Hamdianah [15]. Model yang kami usulkan adalah:

a. Arsitektur 5-14-28-1


Gambar 2 menjelaskan arsitektur yang diusulkan pertama terdiri dari layer input sebanyak 5 node, layer hidden pertama 14 node, layer hidden kedua 28 node, dan layer output 1 node. Layer input terdiri dari 5 variabel, yaitu luas tanah, jarak tanam, jenis padi, jumlah memupuk, jenis pupuk. Gambar 2 menjelaskan arsitektur pertama yang diusulkan dengan total parameter dari arsitektur input ke hidden pertama adalah 5 input variable dikalikan 14 dan ditambah bias 14 sama dengan 84. Total parameter dari hidden pertama ke hidden kedua adalah 14 dikalikan 28 ditambah bias 28 sama dengan 420, total parameter dari hidden kedua ke output sama dengan 29. Keseluruhan dari parameter dari input ke output adalah 533.

Gbr. 2 Arsitektur Model Pertama

b. Arsitektur 5-12-24-1

Gambar 3 menjelaskan arsitektur yang diusulkan kedua terdiri dari layer input sebanyak 5 node, layer hidden pertama 12 node, layer hidden kedua 24 node, dan layer output 1 node. Gambar 3 menjelaskan arsitektur kedua yang diusulkan dengan total parameter dari arsitektur input ke hidden pertama adalah 5 input variable dikalikan 12 dan ditambah bias 12 sama dengan 72. Total parameter dari hidden pertama ke hidden kedua adalah 12 dikalikan 24 ditambah bias 24 sama dengan 312, total parameter dari hidden kedua ke output sama dengan 25. Keseluruhan dari parameter dari input ke output adalah 409.

Gbr. 3 Arsitektur Model Kedua

Algoritma deep learning merupakan algoritma neural network yang hidden layernya lebih dari 1, berikut algoritma neural network:

- 1. Inisialisasi nilai setiap bobot atau parameter, learning rate
- Setiap node di hidden layer dihitung dengan Persamaan 4.

$$z_{-}in_{j} = w_{0j} + \sum_{i} x_{i}w_{ij} \tag{4}$$

Penjelasan Persamaan 4 adalah w adalah bobot dan bias, dan x adalah variable input. Nilai z_in dilakukan aktivasi dengan fungsi aktivasi sigmoid seperti dalam Persamaan 5.

$$z_j = \frac{1}{1 + e^{-z_- i n_j}} \tag{5}$$

Tujuan dilakukan aktivasi agar nilai dalam rentang yang seragam.

3. Menghitung nilai y yang masuk dari hidden layer, seperti dalam Persamaan 6.

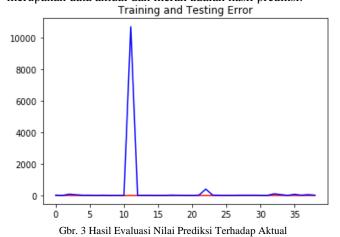
$$y_{-}in_k = w_{0k} + \sum_i z_i w_{ik} \tag{6}$$

Penjelasan Persamaan 6 w adalah bobot atau bias dan z adalah nilai dari hidden layer yang sudah diaktivasi. Selanjutnya nilai y_in dilakukan aktivasi seperti dalam Persamaan 5.

4. Menghitung nilai error MSE seperti dalam Persamaan 1, dan proses memperbaiki nilai setiap bobot dengan Persamaan 7.

$$\delta_k = (y_i i n_k) (1 - y_i i n_k) (t_i - y_i)$$
 (7)

- 5. Berjalan mundur dari output ke belakang bagian node yang ada di hidden dilakukan perubahan bobot
- 6. Melakukan perbaikan bobot


IV. HASIL DAN PEMBAHASAN

Penelitian kami mengusulkan model arsitektur neural network deep learning. Model yang kami usulkan dalam Gambar 2 dan Gambar 3. Model yang diusulkan dicoba training berkali-kali dengan jumlah 500 epoch dan setiap epoch 340 iterasi. Selain itu, kami juga mencoba melakukan training dengan neural network Backpropagation dan deep learning dengan 3 layer hidden. Hasil evaluasi dari model arsitektur yang diusulkan di Tabel II. Tabel II menunjukkan bahwa dengan model arsitektur yang diusulkan ataupun model lainnya nilai loss MSE, MAE ataupun MAPE sama.

TABEL II HASIL EVALUASI ERROR

THIS EVIETISI ERROR						
No	Model	MSE	MAE	MAPE		
1	First Model Proposed	2939977.418	301.788	83.798		
2	Second Proposed Model	2939977.418	301.788	83.798		
3	Model Neural Network Backpropagation	2939977.418	301.788	83.798		
4	Model Neural Network 3 layer hidden	2939977.418	301.788	83.798		

Tabel II menjelaskan bahwa MSE, MAE, dan MAPE dari keempat model yang dibuat mempunyai nilai sama. Alasan nilai MSE, MAE, dan MAPE sama adalah di bagian layer output diberi fungsi aktivasi Sigmoid. Tabel III menampilkan hasil ujicoba data test dari keempat model. Tabel III dari data tes yang sudah dibagi kemudian diujicobakan ke keempat model. Nilai output dari keempat model berupa nilai probabilitas antara 0 sampai 1 karena hasil aktivasi sigmoid. Gambar 4 menjelaskan grafik data aktual terhadap hasil prediksi. Warna biru pada Gambar 4 merupakan data aktual dan merah adalah hasil prediksi.

TABEL III HASIL PREDIKSI

			Model Neural	Model Neural
	Model	Model	Network	Network 3
No	Pertama	Kedua	Backpropagation	Layer Hidden
1	1	1	1	1
2	0.9999993	1	1	1
3	1	1	1	1
4	1	1	1	1
5	1	1	1	1
6	1	1	1	1
7	1	1	1	1
8	1	1	1	1
9	1	1	1	1
10	1	1	1	1
11	0.9999933	1	1	0.9999997

V. KESIMPULAN

Model yang diusulkan dalam penelitian ini mempunyai nilai MSE, MAE, dan MAPE yang sama. Sehingga kedua model yang diusulkan tidak ada yang terbaik, akan tetapi sama. Secara berturut-turut nilai MSE, MAE dan MAPE adalah 2939977.418, 301.788, dan 83.798.

UCAPAN TERIMA KASIH

Terima kasih kepada pihak Litbang Pemas Universitas Islam Lamongan dalam pendanaan penelitian ini.

DAFTAR PUSTAKA

- A. S. Budi, P. H. Susilo, and N. Nafi'iyah, "SVM Algorithm for Predicting Rice Yields," *J. Teknol. Inf. dan Pendidik.*, vol. 13, no. 341, 2020.
- [2] B. D. Setiawan, F. A. Bachtiar, and G. Ramadhona, "Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation," J. Pengemb. Teknol. Inf. dan Ilmu Komput., 2018
- [3] N. Nafi'iyah, "ANALISIS ALGORITMA BACKPROPAGATION DENGAN SVM DALAM HASIL PREDIKSI NILAI UJIAN NASIONAL PADA SEKOLAH TINGKAT PERTAMA," *I N F O R M A T I K A*, vol. 12, no. 1, pp. 5–13, 2020, doi: 10.36723/juri.v12i1.204.
- [4] N. Nafi'iyah, "Tuber Type Classification Based on Image of Bulbs with Deep Learning," 2020, doi: 10.1109/ICISS50791.2020.9307584.
- [5] G. H. Kwak et al., "Automatic mandibular canal detection using a deep convolutional neural network," Sci. Rep., 2020, doi: 10.1038/s41598-020-62586-8.
- [6] N. Nafi'iyah, A. Ahmad Salaffudin1, and N. Q. Nawafilah, "Algoritma Backpropagation untuk Memprediksi Korban Bencana Alam," SMATIKA J., 2020, doi: 10.32664/smatika.v9i02.400.
- [7] H. W. Herwanto, T. Widiyaningtyas, and P. Indriana, "Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi," J. Nas. Tek. Elektro dan Teknol. Inf., 2019, doi: 10.22146/jnteti.v8i4.537.
- [8] E. Triyanto, H. Sismoro, and A. D. Laksito, "IMPLEMENTASI ALGORITMA REGRESI LINEAR BERGANDA UNTUK MEMPREDIKSI PRODUKSI PADI DI KABUPATEN BANTUL," Rabit J. Teknol. dan Sist. Inf. Univrab, 2019, doi: 10.36341/rabit.v4i2.666.
- [9] A. A. Suryanto, "PENERAPAN METODE MEAN ABSOLUTE ERROR (MEA) DALAM ALGORITMA REGRESI LINEAR UNTUK PREDIKSI PRODUKSI PADI," SAINTEKBU, 2019, doi: 10.32764/saintekbu.v11i1.298.
- [10] Supriyanto, Sudjono, and D. Rakhmawati, "Prediksi Luas Panen dan Produksi Padi di Kabupaten Banyumas Menggunakan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS)," J. Probisnis,

2012.

- [11] Djafar, M. I. Sarita, and Y. P. Pasrun, "Peramalan jumlah produksi padi di sulawesi tenggara menggunakan metode," *semanTIK*, 2017.
- [12] N. L. Taqwa, I. K. D. Nuryana, and A. Andriani, "Sistem Prediksi Produksi Padi di Provinsi Jawa Timur Menggunakan Exponential Smoothing Berbasis Web," *Inovate*, 2019.
- [13] B. Das, B. Nair, V. K. Reddy, and P. Venkatesh, "Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India," *Int. J. Biometeorol.*, vol. 62, no. 10, 2018, doi: 10.1007/s00484-018-1583-6.
- [14] N. Liundi, A. W. Darma, R. Gunarso, and H. L. H. S. Warnars, "Improving Rice Productivity in Indonesia with Artificial Intelligence," 2019, doi: 10.1109/CITSM47753.2019.8965385.
- [15] A. Hamdianah, "Comparison of Neural Network and Recurrent Neural Network to Predict Rice Productivity in East Java," *J. Inf. Technol. Comput. Sci.*, vol. 5, no. 3, 2021, doi: 10.25126/jitecs.202053182.
- [16] P. Anitha and T. Chakravarthy, "Agricultural Crop Yield Prediction using Artificial Neural Network with Feed Forward Algorithm," *Int. J. Comput. Sci. Eng.*, vol. 6, no. 11, 2018, doi: 10.26438/ijcse/v6i11.178181.