Prediksi Data Time-series menggunakan Jaringan Syaraf Tiruan Algoritma Backpropagation Pada Kasus Prediksi Permintaan Beras

Gita Indah Marthasari, Silcillya Ayu Astiti, Yufis Azhar

Abstract


Recently, Indonesia, as a country where the majority of the population chooses rice as the primary food source, gets a decline in the rice consumption patterns, which resulted in reduced demand for rice that should have been stable. The decrease of rice purchasing power impacts several rice suppliers, commonly referred to as rice agents, to buy rice from rice production companies. Therefore, prediction of rice stock is essential to do. This paper aims to apply the backpropagation neural network method to forecast the amount of rice demand. The data used in the study is time-series data in the form of the number of requests for rice as much as 609 data from two types of rice. The modeling scenario in this study applies one to five hidden layers with a different number of hidden neurons in each experiment. The elastic net regularization method was applied after the data denormalization process to improve the quality of the resulting model. Based on the experiments, obtained the best model on architecture 7-50-200-300-250-300-1 with MSE = 0.001278, RMSE = 0.301950 in the training process and MSE results = 0.002391, RMSE = 0.204972 in the testing process.

Keywords


rice demand prediction; backpropagation algorithm; artificial neural network

Full Text:

References


A. K. Pakpahan, “Covid-19 Dan Implikasi Bagi Usaha Mikro, Kecil, Dan Menengah,” J. Ilm. Hub. Int., vol. 0, no. 0, pp. 59–64, 2020, doi: 10.26593/jihi.v0i0.3870.59-64.

D. A. D. Nasution, E. Erlina, and I. Muda, “Dampak Pandemi COVID-19 terhadap Perekonomian Indonesia,” J. Benefita, vol. 5, no. 2, p. 212, 2020, doi: 10.22216/jbe.v5i2.5313.

M. Hanif, M. Abdurohman, and A. G. Putrada, “Rice consumption prediction using linear regression method for smart rice box system,” J. Teknol. dan Sist. Komput., vol. 8, no. 4, pp. 284–288, 2020, doi: 10.14710/jtsiskom.2020.13353.

A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform. Sink., vol. 2, no. 2, pp. 37–43, 2017.

Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 4, no. 1, p. 30, 2018, doi: 10.26594/register.v4i1.1157.

A. Sudarsono, “Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode,” Media Infotama, vol. 12, no. 1, pp. 61–69, 2016.

D. Monika, A. Ahmad, S. Wardani, and Solikhun, “Model Jaringan Syaraf Tiruan Dalam Memprediksi Ketersediaan Cabai Berdasarkan Provinsi,” Teknika, vol. 8, no. 1, pp. 17–24, 2019, doi: 10.34148/teknika.v8i1.140.

B. Bagasta et al., “JUMLAH NILAI EKSPOR DI PROVINSI NTB ( Implementation of Artificial Neural Network Algorithm Backpropagation Method to Predict Amount of Export Value in the NTB Province ),” vol. 1, no. 2, 2019.

M. Rahul, I. Gunawan, F. Anggraini, S. Sumarno, and I. O. Kirana, “Analisa JST Untuk Memprediksi Pembuatan SIM Menggunakan Metode Algoritma Backpropagation,” J. Media Inform. Budidarma, vol. 4, no. 1, p. 124, 2020, doi: 10.30865/mib.v4i1.1742.

M. Masruroh, “Perbandingan Metode Regresi Linear Dan Neural Network Backpropagation Dalam Prediksi Nilai Ujian Nasional Siswa Smp Menggunakan Software R,” Joutica, vol. 5, no. 1, p. 331, 2020, doi: 10.30736/jti.v5i1.347.

Y. D. Lestari, “Jaringan syaraf tiruan untuk prediksi penjualan jamur menggunakan algoritma backropagation,” J. ISD, vol. 2, no. 1, pp. 40–45, 2017.

D. E. Rufiyanti, “Implementasi Jaringan Syaraf Tiruan Backpropagation Dengan Input Model Arima Untuk Peramalan Harga Saham,” pp. 1–124, 2015.

P. Churn, D. A. N. Strategi, and R. Pada, “Prediksi churn dan strategi retensi pada kasus perusahaan telekomunikasi,” 2021.

R. P. Masini, M. C. Medeiros, and E. F. Mendes, “Machine learning advances for time series forecasting,” arXiv, pp. 1–44, 2020.




DOI: https://doi.org/10.30591/jpit.v6i3.2627

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.