Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi

Dicki Irfansyah, Metty Mustikasari, Amat Suroso

Abstract


Indonesia is the fourth largest coffee producing country in the world. However, when compared to 3 other countries, Indonesia's coffee production is still relatively small. Many factors cause this to happen, including the number of farmers' coffee trees that are attacked by diseases. If the handling of this disease is slow, then the disease in one tree can be transmitted to other trees. This causes a decrease in Indonesian coffee productivity. In this study, the author implemented the Alexnet Convolutional Neural Network (CNN) architecture using  the MATLAB programming platform for the identification of diseases in coffee plants through images. The total number of datasets used is 300 data which is divided into 3 classes, namely health, rust and red spider mite. The training process involving 260 training data resulted in an accuracy of 69.44-80.56%. The network testing process using 40 test data resulted in an accuracy of 81.6%. Based on the results of the study, it can be said that the Alexnet architecture is accurate for the classification of leaf pests on coffee plants

Keywords


Klasifikasi Citra, MATLAB, Convolutional Neural Network, Arsitektur Alexnet, Tanaman Kopi

Full Text:

References


Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, pp. 1–11, 2015.

M. S. Wibawa, “Pengaruh Fungsi Aktivasi , Optimisasi dan Jumlah Epoch Terhadap Performa Pengaruh Fungsi Aktivasi , Optimisasi dan Jumlah Epoch Terhadap Performa Jaringan Saraf Tiruan,” JSI, vol. 11, pp. 1-9, 2016.

S. Ruder, “Overview of Gradient Descent Optimization Algorithms,” arXiv:1609.04747v2, pp. 1-14, 2017.

G. Hinton, “A Practical Guide to Training Restricted Boltzmann Machines,” Department of Computer Science University of Toronto, 2010.

I. Goodfellow, Y. Bengio and A. Courville, “Deep learning”, The MIT Press, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NeurIPS Proceedings, 2012.

M. Alban and T. Gilligan, “Automated Detection of Diabetic Retinopathy using Fluorescein Angiography Photograph,” Stanford University, 2016.

I. W. Suartika, A. Y. Wijaya, dan R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” Jurnal Teknik ITS Vol. 5, No. 1, , 2016.

M. B. Bejiga, A. Zeggada, A. Nouffidj and F. Melgani, “A Convolutional Neural Network Approach for Assisting Avalanche Search and Rescue Operations with UAV Imagery”. Remote Sens. pp 5, 2016.

S. Hijazi, R. Kumar and C. Rowen, “Using Convolutional Neural Networks for Image Recognition,” Remote Sens. pp 7, 2015.

W. Caesarendra dan M. Ariyanto, “Panduan Belajar Mandiri MATLAB,” Elex Media Computindo, 2011.

J. Han, M. Kamber and J. Pei, “Data Mining: Concepts and Techniques,” Morgan Kaufmann Publishers, 2011.

L. Farokhah, “Implementasi K-Nearest Neighbor untuk Klasifikasi Bunga dengan Ekstraksi Fitur Warna RGB,” JTIIK, vol. 7, pp. 1129-1136, 2019.

E. K. Ratnasari, R. V. Hari Ginardi dan C. Fatichah, “Klasifikasi Penyakit Noda pada Citra Daun Tebu Berdasarkan Ciri Tekstur dan Warna Menggunakan Segmentation-Based Gray Level Cooccurrence Matrix dan LAB Color Moments oleh Ratnasari,” Jurnal Ilmiah Teknologi Sistem Informasi, vol. 3, pp. 1-10, 2017.

B. Hidayat dan G. Hermawan, “Deteksi Hama Pada Daun Teh Dengan Metode Convolutional Neural Network (Cnn),” Tesis, UNIKOM, 2019.

E. N. Arrofiqoh, dan Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi,” JIG, vol. 24, pp. 61-8, 2018.

Haryono, K. Anam dan A. Saleh, “Autentikasi Daun Herbal Menggunakan Convolutional Neural Network dan Raspberry Pi,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 9, 2020.




DOI: https://doi.org/10.30591/jpit.v6i2.2802

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.