Deteksi Pengendara Mengantuk dengan Kombinasi Haar Cascade Classifier dan Support Vector Machine
Abstract
Keywords
References
L. N. Boyle, J. Tippin, A. Paul dan M. Rizzo, “Driver performance in the moments surrounding a microsleep,” Transportation Research Part F: Traffic Psychology and Behaviour, vol. 11, no. 2, pp. 126-136, 2008.
M. Rivera dan L. Salas, “Monitoring of Micro-sleep and Sleepiness for the Drivers Using EEG Signal,” School of Innovation, Design and Engineering (IDT), Mälardalen University, Västerås, Sweden, 2013.
T. Hwang, M. KIm, S. Hong dan K. S. Park, “Driver drowsiness detection using the in-ear EEG,” dalam Annual International Conference og the IEEE Enginerring in Medicine and Biology Society (EMBC), Orlando, FL, USA, 2016.
S. Junawane, P. Jagtap, L. Deshpande, K. Soni dan R. Jab, “Real-time Driver Drowsiness Detection for Android Application Using Deep Neural Networks Techniques,” Procedia Computer Science, vol. 6, no. 11, pp. 400 - 407, 2017.
S. Sangle, B. Rathore dan A. R. Rathod, “Real Time Drowsiness Detection System,” IOSR Journal of Computer Engineering (IOSR-JCE), pp. 87-92, 2018.
K. Kaida, M. Takahashi, T. Akerste, A. Nakata, Y. Otsuka, T. Haratani dan K. Fukusawa, “Validation of the Karolinska sleepiness scale against performance and EEG variables,” Clin Neurophysiol, vol. 117, no. 7, pp. 1574-81, 2006.
S. Saravanaraj, M. Abd Kadir, S. Sharifah, S. Azmi, S. Mohamad Md dan A. Hussein Ali, “Drowsiness Detection System using Eye Aspect Ratio Technique,” dalam 2020 IEEE Student Conference on Research and Development, SCOReD 2020, Michigan, 2020.
C. B. S. Maior, M. J. d. C. Moura, J. M. M. Santana dan I. D. Lins, “Real-time classification for autonomous drowsiness detection using eye aspect ratio,” Expert Systems with Applications, p. 113505, 2020.
C. Ryan, B. O'Sullivan, A. Elrasad, A. Cahill, J. Lemley dan E. Perot, “Real-time face & eye tracking and blink detection using event cameras,” Neural Networks, vol. 141, pp. 87-97, 2021.
N. Theresia Br. Pasaribu, A. Prijono, R. Ratnadewi, R. Pramono Adhie dan J. Felix, “Drowsiness Detection According to the Number of Blinking Eyes Specified From Eye Aspect Ratio Value Modification,” dalam Proceedings of the 1st International Conference on Life, Innovation, Change and Knowledge (ICLICK 2018), Bandung, 2019.
J. Cech dan T. Soukupov, “Eye Blink Detection Using Facial Landmarks,” dalam 21st Computer Vision Winter Workshop, Slovenia, 2016.
A. S, A. J. K. R. Subhashini dan J. Thomas, “Drowsiness Detection Using Eye Blink and Facial Features Image Analysis,” Medico-Legal Update, vol. 20, no. 4, pp. 27-30, 2020.
M. S. Satyanarayana, T. M. Aruna dan Y. K. Guruprasad, “Continuous monitoring and identification of driver drowsiness alert system,” Global Transitions Proceedings, vol. 2, no. 1, pp. 123-127, 2021.
D. A. Navastara, W. Y. M. Putra dan C. Fatichah, “Drowsiness Detection Based on Facial Landmark and Uniform Local Binary Pattern,” Journal of Physics: Conference Series, vol. 1529, no. 5, 2020.
P. V. Patil, “Kaggle,” [Online]. Available: https://www.kaggle.com/prasadvpatil/mrl-dataset. [Diakses 17 October 2021].
W. Ayadi, W. Elhamzi, I. Charfi dan M. Atri, “A hybrid feature extraction approach for brain MRI classificationbased on Bag-of-words,” Biomedical Signal Processing and Control, vol. 48, pp. 144-152, 2019.
DOI: https://doi.org/10.30591/jpit.v7i1.3346
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
JPIT INDEXED BY
This work is licensed under a Creative Commons Attribution 4.0 International License.