Klasifikasi Judul Berita Clickbait menggunakan RNN-LSTM

Widi Afandi, Satria Nur Saputro, Andini Mulia Kusumaningrum, Hikari Adriansyah, Muhammad Hilmi Kafabi, Sudianto Sudianto

Abstract


Amid technological developments, online news of various life topics is shared across various platforms. Many media often take advantage of this opportunity by uploading their news on several online platforms to increase the traffic and rankings they upload to make much profit. However, many online media attract readers' attention by exaggerating the headlines or news headlines they upload. That way, the news title is often not by the content of the news. This phenomenon is commonly known as "clickbait" among the public. The media usually do this to increase traffic, rankings, and finances. Therefore, this study classified the news with clickbait and non-clickbait titles using the RNN-LSTM architecture. In this study, the classification of clickbait news titles uses the RNN-LSTM architecture. The classification results obtained calculation accuracy of 79% on training data and 77% accuracy on test data.

Keywords


Classification, Clickbait, NLP, RNN-LSTM

Full Text:

References


V. Kumar, D. Khattar, S. Gairola, Y. Kumar Lal, and V. Varma, “Identifying clickbait: A multi-strategy approach using neural networks,” 41st Int. ACM SIGIR Conf. Res. Dev. Inf. Retrieval, SIGIR 2018, pp. 1225–1228, 2018, doi: 10.1145/3209978.3210144.

R. Yunanto, A. P. Purfini, and A. Prabuwisesa, “Survei Literatur : Deteksi Berita Palsu Menggunakan Pendekatan Deep Learning,” J. Manaj. Inform., vol. xx, no. 2, pp. 118–130, 2021, doi: 10.34010/jamika.v11i2.5362.

S. Kaur, P. Kumar, and P. Kumaraguru, “Detecting clickbaits using two-phase hybrid CNN-LSTM biterm model,” Expert Syst. Appl., vol. 151, p. 113350, 2020, doi: 10.1016/j.eswa.2020.113350.

R. Jing, “A Self-attention Based LSTM Network for Text Classification,” J. Phys. Conf. Ser., vol. 1207, no. 1, 2019, doi: 10.1088/1742-6596/1207/1/012008.

F. Fauzi, F. F. Abdulloh, and I. R. Pambudi, “Analisis Sentimen Pengguna Youtube Terhadap Program Vaksin Covid-19,” Comput. Sci. Res. Its Dev. J., vol. 13, no. 3, pp. 141–148, 2021.

S. Modha, P. Majumder, T. Mandl, and C. Mandalia, “Detecting and visualizing hate speech in social media: A cyber Watchdog for surveillance,” Expert Syst. Appl., vol. 161, p. 113725, 2020, doi: 10.1016/j.eswa.2020.113725.

A. Bisht, A. Singh, H. S. Bhadauria, J. Virmani, and Kriti, “Detection of hate speech and offensive language in twitter data using LSTM model,” Adv. Intell. Syst. Comput., vol. 1124, pp. 243–264, 2020, doi: 10.1007/978-981-15-2740-1_17.

Z. H. Kilimci and S. Akyokus, “The Evaluation of Word Embedding Models and Deep Learning Algorithms for Turkish Text Classification,” UBMK 2019 - Proceedings, 4th Int. Conf. Comput. Sci. Eng., pp. 548–553, 2019, doi: 10.1109/UBMK.2019.8907027.

P. Liu, X. Qiu, and H. Xuanjing, “Recurrent neural network for text classification with multi-task learning,” IJCAI Int. Jt. Conf. Artif. Intell., vol. 2016-Janua, pp. 2873–2879, 2016.

S. Sudianto, A. D. Sripamuji, I. Ramadhanti, R. R. Amalia, J. Saputra, and B. Prihatnowo, “Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron pada Klasisifikasi Topik Berita,” vol. 11, no. 2, pp. 84–91, 2022.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.

A. William and Y. Sari, “CLICK-ID: A novel dataset for Indonesian clickbait headlines,” Data Br., vol. 32, p. 106231, 2020, doi: 10.1016/j.dib.2020.106231.

S. Sudianto, P. Wahyuningtias, H. W. Utami, U. A. Raihan, and H. N. Hanifah, “Comparison Of Random Forest And Support Vector Machine Methods On Twitter Sentiment Analysis ( Case Study : Internet Selebgram Rachel Vennya Escape From Quarantine ) Perbandingan Metode Random Forest Dan Support Vector Machine Pada Analisis Sentimen Twitt,” Jutif, vol. 3, no. 1, pp. 141–145, 2022.

Y. Puspitarani and Y. Syukriyah, “Pemanfaatan Optical Character Recognition Dan Text Feature Extraction Untuk Membangun Basisdata Pengaduan Tenaga Kerja,” vol. 1, no. 3, pp. 704–710, 2020.

Sudianto, Y. Herdiyeni, A. Haristu, and M. Hardhienata, “Chilli quality classification using deep learning,” 2020. doi: 10.1109/ICOSICA49951.2020.9243176.

S. Boukil, M. Biniz, F. El Adnani, L. Cherrat, and A. E. El Moutaouakkil, “Arabic text classification using deep learning technics,” Int. J. Grid Distrib. Comput., vol. 11, no. 9, pp. 103–114, 2018, doi: 10.14257/ijgdc.2018.11.9.09.




DOI: https://doi.org/10.30591/jpit.v7i2.3401

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.