Klasifikasi Judul Berita Clickbait menggunakan RNN-LSTM
Abstract
Keywords
References
V. Kumar, D. Khattar, S. Gairola, Y. Kumar Lal, and V. Varma, “Identifying clickbait: A multi-strategy approach using neural networks,” 41st Int. ACM SIGIR Conf. Res. Dev. Inf. Retrieval, SIGIR 2018, pp. 1225–1228, 2018, doi: 10.1145/3209978.3210144.
R. Yunanto, A. P. Purfini, and A. Prabuwisesa, “Survei Literatur : Deteksi Berita Palsu Menggunakan Pendekatan Deep Learning,” J. Manaj. Inform., vol. xx, no. 2, pp. 118–130, 2021, doi: 10.34010/jamika.v11i2.5362.
S. Kaur, P. Kumar, and P. Kumaraguru, “Detecting clickbaits using two-phase hybrid CNN-LSTM biterm model,” Expert Syst. Appl., vol. 151, p. 113350, 2020, doi: 10.1016/j.eswa.2020.113350.
R. Jing, “A Self-attention Based LSTM Network for Text Classification,” J. Phys. Conf. Ser., vol. 1207, no. 1, 2019, doi: 10.1088/1742-6596/1207/1/012008.
F. Fauzi, F. F. Abdulloh, and I. R. Pambudi, “Analisis Sentimen Pengguna Youtube Terhadap Program Vaksin Covid-19,” Comput. Sci. Res. Its Dev. J., vol. 13, no. 3, pp. 141–148, 2021.
S. Modha, P. Majumder, T. Mandl, and C. Mandalia, “Detecting and visualizing hate speech in social media: A cyber Watchdog for surveillance,” Expert Syst. Appl., vol. 161, p. 113725, 2020, doi: 10.1016/j.eswa.2020.113725.
A. Bisht, A. Singh, H. S. Bhadauria, J. Virmani, and Kriti, “Detection of hate speech and offensive language in twitter data using LSTM model,” Adv. Intell. Syst. Comput., vol. 1124, pp. 243–264, 2020, doi: 10.1007/978-981-15-2740-1_17.
Z. H. Kilimci and S. Akyokus, “The Evaluation of Word Embedding Models and Deep Learning Algorithms for Turkish Text Classification,” UBMK 2019 - Proceedings, 4th Int. Conf. Comput. Sci. Eng., pp. 548–553, 2019, doi: 10.1109/UBMK.2019.8907027.
P. Liu, X. Qiu, and H. Xuanjing, “Recurrent neural network for text classification with multi-task learning,” IJCAI Int. Jt. Conf. Artif. Intell., vol. 2016-Janua, pp. 2873–2879, 2016.
S. Sudianto, A. D. Sripamuji, I. Ramadhanti, R. R. Amalia, J. Saputra, and B. Prihatnowo, “Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron pada Klasisifikasi Topik Berita,” vol. 11, no. 2, pp. 84–91, 2022.
S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.
A. William and Y. Sari, “CLICK-ID: A novel dataset for Indonesian clickbait headlines,” Data Br., vol. 32, p. 106231, 2020, doi: 10.1016/j.dib.2020.106231.
S. Sudianto, P. Wahyuningtias, H. W. Utami, U. A. Raihan, and H. N. Hanifah, “Comparison Of Random Forest And Support Vector Machine Methods On Twitter Sentiment Analysis ( Case Study : Internet Selebgram Rachel Vennya Escape From Quarantine ) Perbandingan Metode Random Forest Dan Support Vector Machine Pada Analisis Sentimen Twitt,” Jutif, vol. 3, no. 1, pp. 141–145, 2022.
Y. Puspitarani and Y. Syukriyah, “Pemanfaatan Optical Character Recognition Dan Text Feature Extraction Untuk Membangun Basisdata Pengaduan Tenaga Kerja,” vol. 1, no. 3, pp. 704–710, 2020.
Sudianto, Y. Herdiyeni, A. Haristu, and M. Hardhienata, “Chilli quality classification using deep learning,” 2020. doi: 10.1109/ICOSICA49951.2020.9243176.
S. Boukil, M. Biniz, F. El Adnani, L. Cherrat, and A. E. El Moutaouakkil, “Arabic text classification using deep learning technics,” Int. J. Grid Distrib. Comput., vol. 11, no. 9, pp. 103–114, 2018, doi: 10.14257/ijgdc.2018.11.9.09.
DOI: https://doi.org/10.30591/jpit.v7i2.3401
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
JPIT INDEXED BY
This work is licensed under a Creative Commons Attribution 4.0 International License.