Analisis Komparasi Algoritma Machine Learning untuk Sentiment Analysis (Studi Kasus: Komentar YouTube “Kekerasan Seksual”)

Chandra Ayunda Apta Soemedhy, Nora Trivetisia, Nawang Anggita Winanti, Dwi Puspa Martiyaningsih, Tri Wulandari Utami, Sudianto Sudianto

Abstract


Cases of sexual violence in the last decade have been rampant in Indonesia. Cases of sexual violence are increasingly exposed, along with the increasing use of social media. One of them is violence against women. Cases of sexual violence often cause various kinds of stigma in the community, so this study aims to determine the public's response to cases of sexual harassment using sentiment analysis. The data used is sourced from YouTube comments with the title "Kasus Bunuh Diri NW: Bripda Randy Tersangka, Penanganan Polisi Dikritik | Narasi Newsroom." The method used is Machine Learning algorithms such as the SVM algorithm, Naive Bayes, and Random Forest. The results of comparing the three Machine Learning algorithms, Random Forest, obtained the best accuracy rate of 78% compared to the other two algorithms in conducting sentiment analysis on YouTube comments about sexual harassment discussions.

Keywords


Analisis sentimen, Naive Bayes, pelecehan seksual, Random Forest, SVM

Full Text:

References


U. Z. NOVIANI P, R. Arifah, C. CECEP, and S. Humaedi, “Mengatasi Dan Mencegah Tindak Kekerasan Seksual Pada Perempuan Dengan Pelatihan Asertif,” Pros. Penelit. dan Pengabdi. Kpd. Masy., vol. 5, no. 1, p. 48, 2018, doi: 10.24198/jppm.v5i1.16035.

S. N. J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 279, 2019, doi: 10.26418/jp.v5i3.34368.

H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,” Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.

A. A. Rahman and Y. I. Kurniawan, “Aplikasi Klasifikasi Penerima Kartu Indonesia Sehat Menggunakan,” Progr. Stud. Inform. Univ. Muhammadiyah Surakarta, 2016.

C. Fadlan, S. Ningsih, and A. P. Windarto, “Penerapan Metode Naïve Bayes Dalam Klasifikasi Kelayakan Keluarga Penerima Beras Rastra,” J. Tek. Inform. Musirawas, vol. 3, no. 1, p. 1, 2018, doi: 10.32767/jutim.v3i1.286.

F. Komunikasi, U. M. Surakarta, J. A. Yani, and T. Pos, “Sistem Klasifikasi Variabel Tingkat Penerimaan Konsumen Terhadap Mobil Menggunakan Metode Random Forest,” J. Tek. Elektro, vol. 9, no. 1, pp. 24–29, 2017, doi: 10.15294/jte.v9i1.10452.

S. Saadah and H. Salsabila, “Jurnal Politeknik Caltex Riau Prediksi Harga Bitcoin Menggunakan Metode Random Forest (Studi Kasus: Data Acak Pada Awal Masa Pandemic Covid-19),” J. Komput. Terap., vol. 7, no. 1, pp. 24–32, 2021, [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/.

A. M. Pravina, I. Cholissodin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2789–2797, 2019, [Online]. Available: http://j-ptiik.ub.ac.id.

M. A. Maulana, A. Setyanto, and M. P. Kurniawan, “Analisis Sentimen Media Sosial Universitas Amikom,” Semin. Nas. Teknol. Inf. dan Multimed. 2018 Univ. AMIKOM Yogyakarta, 10 Februari 2018, pp. 7–12, 2018.

M. Al Omari, M. Al-Hajj, N. Hammami, and A. Sabra, “Sentiment classifier: Logistic regression for Arabic services’ reviews in Lebanon,” 2019 Int. Conf. Comput. Inf. Sci. ICCIS 2019, no. 2012, pp. 1–5, 2019, doi: 10.1109/ICCISci.2019.8716394.

N. O. F. Daeli and Adiwijaya, “Sentiment Analysis on Movie Reviews Using Information Gain and K-Nearest Neighbor,” J. Data Sci. Its Appl., vol. 3, no. 1, pp. 1–7, 2020, doi: 10.34818/JDSA.2020.3.22.

M. Wongkar and A. Angdresey, “Sentiment Analysis Using Naive Bayes Algorithm Of The Data Crawler: Twitter,” Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, pp. 1–5, 2019, doi: 10.1109/ICIC47613.2019.8985884.

T. S. Kasus, P. Pada, and S. Tripadvisor, “Analisis Sentimen Pelanggan Hotel di,” vol. 8106, pp. 21–29, 2021, doi: 10.20895/INISTA.V3.

M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.

H. Dalam and P. Hukum, “Pelecehan Seksual Di Ruang Publik ( Street,” vol. 01, no. 02, pp. 56–65, 2016.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.

R. A. Maisal, A. N. Hidayanto, N. F. Ayuning Budi, Z. Abidin, and A. Purbasari, “Analysis of Sentiments on Indonesian YouTube Video Comments: Case Study of the Indonesian Government’s Plan to Move the Capital City,” Proc. - 1st Int. Conf. Informatics, Multimedia, Cyber Inf. Syst. ICIMCIS 2019, pp. 121–124, 2019, doi: 10.1109/ICIMCIS48181.2019.8985228.

F. Tempola, M. Muhammad, and A. Khairan, “Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, p. 577, 2018, doi: 10.25126/jtiik.201855983.

H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 578, 2021, doi: 10.32493/informatika.v5i4.7575.

Y. I. Kurniawan, “Perbandingan Algoritma Naive Bayes dan C.45 dalam Klasifikasi Data Mining,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, p. 455, 2018, doi: 10.25126/jtiik.201854803.

Yunitasari, H. S. Hopipah, and R. Mayasari, “Optimasi Backward Elimination untuk Klasifikasi Kepuasan Pelanggan Menggunakan Algoritme k-nearest neighbor (k-NN) and Naive Bayes,” Technomedia J., vol. 6, no. 1, pp. 99–110, 2021, doi: 10.33050/tmj.v6i1.1531.

F. A. Suharno and L. Listiyoko, “Aplikasi Berbasis Web dengan Metode Crawling sebagai Cara Pengumpulan Data untuk Mengambil Keputusan,” Semin. Nas. Rekayasa Teknol. Inf., no. November, pp. 105–109, 2018.




DOI: https://doi.org/10.30591/jpit.v7i2.3547

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.