Analisis Sentimen Masyarakat Indonesia Terkait Vaksin Covid-19 Pada Media Sosial Twitter Menggunakan Metode Support Vector Machine (Svm)
Abstract
Keywords
References
H. A. Rothan and S. N. Byrareddy, “The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak,” Journal of Autoimmunity, vol. 109. 2020. doi: 10.1016/j.jaut.2020.102433.
S. Syafrida and R. Hartati, “Bersama Melawan Virus Covid 19 di Indonesia,” SALAM: Jurnal Sosial dan Budaya Syar-i, vol. 7, no. 6, 2020, doi: 10.15408/sjsbs.v7i6.15325.
D. A. Broniatowski, M. J. Paul, and M. Dredze, “Twitter: Big data opportunities,” Science, vol. 345, no. 6193. 2014. doi: 10.1126/science.345.6193.148-a.
H. Vanam and J. Retna Raj R, “Analysis of twitter data through big data based sentiment analysis approaches,” Materials Today: Proceedings, 2021, doi: 10.1016/j.matpr.2020.11.486.
D. Alita, S. Priyanta, and N. Rokhman, “Analysis of Emoticon and Sarcasm Effect on Sentiment Analysis of Indonesian Language on Twitter,” Journal of Information Systems Engineering and Business Intelligence, vol. 5, no. 2, 2019, doi: 10.20473/jisebi.5.2.100-109.
I. P. Windasari, F. N. Uzzi, and K. I. Satoto, “Sentiment analysis on Twitter posts: An analysis of positive or negative opinion on GoJek,” in Proceedings - 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2017, 2017, vol. 2018-January. doi: 10.1109/ICITACEE.2017.8257715.
F. F. Irfani, “ANALISIS SENTIMEN REVIEW APLIKASI RUANGGURU MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” JBMI (Jurnal Bisnis, Manajemen, dan Informatika), vol. 16, no. 3, pp. 258–266, Feb. 2020, doi: 10.26487/jbmi.v16i3.8607.
S. Y. Pangestu, Y. Astuti, and L. D. Farida, “Algoritma Support Vector Machine untuk Klasifikasi Sikap Politik terhadap Partai Politik Indonesia,” Jurnal Mantik Penusa, vol. 3, no. 1, 2019.
R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, 2020, doi: 10.30865/mib.v4i3.2181.
M. T. Imelda A.Muis & Muhammad Affandes, “Penerapan Metode Support Vector Machine ( SVM ) Menggunakan Kernel Radial Basis Function ( RBF ) Pada Klasifikasi Tweet,” Sains, Teknologi dan Industri.UIN Sultan Syarif Kasim Riau, vol. 12, no. 2, 2015.
D. A. Kristiyanti, Normah, and A. H. Umam, “Prediction of Indonesia presidential election results for the 2019-2024 period using twitter sentiment analysis,” in Proceedings of 2019 5th International Conference on New Media Studies, CONMEDIA 2019, Oct. 2019, pp. 36–42. doi: 10.1109/CONMEDIA46929.2019.8981823.
R. Joshi and R. Tekchandani, “Comparative analysis of twitter data using supervised classifiers,” in Proceedings of the International Conference on Inventive Computation Technologies, ICICT 2016, 2016, vol. 2016. doi: 10.1109/INVENTIVE.2016.7830089.
Jiawei Han and M. Kamber, Data Mining: Concepts and Techniques Second Edition, vol. 53, no. 9. 2013.
A. Rahmansyah, O. Dewi, P. Andini, T. Hastuti, P. Ningrum, and M. E. Suryana, “Membandingkan Pengaruh Feature Selection Terhadap Algoritma Naïve Bayes dan Support Vector Machine,” 2018.
D. Haryalesmana Wahid, “Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity,” IJCCS, vol. 10, no. 2, pp. 207–218, 2016.
A. Kowalczyk, “Support Vector Machines Succinctly,” Journal of Chemical Information and Modeling, vol. 53, no. 9, 2017.
S. Rani and J. Singh, “SENTIMENT ANALYSIS OF TWEETS USING SUPPORT VECTOR MACHINE,” International Journal of Computer Science and Mobile Applications, vol. 5, 2017.
N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” vol. 6, no. 3, 2021, [Online]. Available: http://situs.com
Styawati, Andi Nurkholis, Zaenal Abidin, and Heni Sulistiani, “Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 904–910, Oct. 2021, doi: 10.29207/resti.v5i5.3380.
“A New Approach for Evaluation of Data Mining Techniques,” International Journal of Computer Science Issues, vol. 7, no. 5, 2010.
S. Styawati and K. Mustofa, “A Support Vector Machine-Firefly Algorithm for Movie Opinion Data Classification,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 13, no. 3, p. 219, Jul. 2019, doi: 10.22146/ijccs.41302.
DOI: https://doi.org/10.30591/jpit.v7i2.3549
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License.
JPIT INDEXED BY
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | |
This work is licensed under a Creative Commons Attribution 4.0 International License.