Analisis Sentimen Masyarakat Indonesia Terkait Vaksin Covid-19 Pada Media Sosial Twitter Menggunakan Metode Support Vector Machine (Svm)

Muhammad Fadilah Arfat, Styawati Styawati, Andi Nurkholis, Indra Kurniawan

Abstract


COVID-19 is a new disease outbreak that has been officially designated as a global pandemic by the Worldi Health Organizationi (WHO) oni March 11, 2020. Seeing the rapid development of COVID-19, the Government of Indonesia has carried out vaccinations that have been carried out since January 13, 2021, this vaccination is prioritized for medical personnel and red zone areas. Since its emergence, therei have been many prosi andi consi regardingi the vaccination process and it has alsoi become a trending topici on sociali media Twitter oni January 13, 2021. Onei of the mosti widely used social media by Indonesiani people isi twitter sociali media. According to We arei Social sources in 2020, twitteri social media is rankedi fifth in the category of sociali media that is often used with a user percentage of 56% after Youtube, Whatsapp, Facebook as well as Instagram. Thisi shows that there is a huge opportunity for data sources that can be usedi to find out the positive and negativei sentiments of the related community, which is useful for interested parties to carry out evaluations. So that it can see how many people agree and disagree. If the percentage of people who disagree is more, the government must do better socialization so that people can better understand and not feel afraid of the vaccine. This study aims to find out how public sentiment is about the government's policies regarding the COVID-19 vaccinei using the Support Vector Machine method. by extracting the tf-idf feature and comparing the kernels contained in the SVM, including Linear, RBF, Polynomial, and Sigmoid. With tests that will later see how the values of accuracy, precision, recall and F1-Score are. 

Keywords


Analisis Sentimen, SVM, Twitter, Vaksin, Covid-19

Full Text:

References


H. A. Rothan and S. N. Byrareddy, “The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak,” Journal of Autoimmunity, vol. 109. 2020. doi: 10.1016/j.jaut.2020.102433.

S. Syafrida and R. Hartati, “Bersama Melawan Virus Covid 19 di Indonesia,” SALAM: Jurnal Sosial dan Budaya Syar-i, vol. 7, no. 6, 2020, doi: 10.15408/sjsbs.v7i6.15325.

D. A. Broniatowski, M. J. Paul, and M. Dredze, “Twitter: Big data opportunities,” Science, vol. 345, no. 6193. 2014. doi: 10.1126/science.345.6193.148-a.

H. Vanam and J. Retna Raj R, “Analysis of twitter data through big data based sentiment analysis approaches,” Materials Today: Proceedings, 2021, doi: 10.1016/j.matpr.2020.11.486.

D. Alita, S. Priyanta, and N. Rokhman, “Analysis of Emoticon and Sarcasm Effect on Sentiment Analysis of Indonesian Language on Twitter,” Journal of Information Systems Engineering and Business Intelligence, vol. 5, no. 2, 2019, doi: 10.20473/jisebi.5.2.100-109.

I. P. Windasari, F. N. Uzzi, and K. I. Satoto, “Sentiment analysis on Twitter posts: An analysis of positive or negative opinion on GoJek,” in Proceedings - 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2017, 2017, vol. 2018-January. doi: 10.1109/ICITACEE.2017.8257715.

F. F. Irfani, “ANALISIS SENTIMEN REVIEW APLIKASI RUANGGURU MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” JBMI (Jurnal Bisnis, Manajemen, dan Informatika), vol. 16, no. 3, pp. 258–266, Feb. 2020, doi: 10.26487/jbmi.v16i3.8607.

S. Y. Pangestu, Y. Astuti, and L. D. Farida, “Algoritma Support Vector Machine untuk Klasifikasi Sikap Politik terhadap Partai Politik Indonesia,” Jurnal Mantik Penusa, vol. 3, no. 1, 2019.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, 2020, doi: 10.30865/mib.v4i3.2181.

M. T. Imelda A.Muis & Muhammad Affandes, “Penerapan Metode Support Vector Machine ( SVM ) Menggunakan Kernel Radial Basis Function ( RBF ) Pada Klasifikasi Tweet,” Sains, Teknologi dan Industri.UIN Sultan Syarif Kasim Riau, vol. 12, no. 2, 2015.

D. A. Kristiyanti, Normah, and A. H. Umam, “Prediction of Indonesia presidential election results for the 2019-2024 period using twitter sentiment analysis,” in Proceedings of 2019 5th International Conference on New Media Studies, CONMEDIA 2019, Oct. 2019, pp. 36–42. doi: 10.1109/CONMEDIA46929.2019.8981823.

R. Joshi and R. Tekchandani, “Comparative analysis of twitter data using supervised classifiers,” in Proceedings of the International Conference on Inventive Computation Technologies, ICICT 2016, 2016, vol. 2016. doi: 10.1109/INVENTIVE.2016.7830089.

Jiawei Han and M. Kamber, Data Mining: Concepts and Techniques Second Edition, vol. 53, no. 9. 2013.

A. Rahmansyah, O. Dewi, P. Andini, T. Hastuti, P. Ningrum, and M. E. Suryana, “Membandingkan Pengaruh Feature Selection Terhadap Algoritma Naïve Bayes dan Support Vector Machine,” 2018.

D. Haryalesmana Wahid, “Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity,” IJCCS, vol. 10, no. 2, pp. 207–218, 2016.

A. Kowalczyk, “Support Vector Machines Succinctly,” Journal of Chemical Information and Modeling, vol. 53, no. 9, 2017.

S. Rani and J. Singh, “SENTIMENT ANALYSIS OF TWEETS USING SUPPORT VECTOR MACHINE,” International Journal of Computer Science and Mobile Applications, vol. 5, 2017.

N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” vol. 6, no. 3, 2021, [Online]. Available: http://situs.com

Styawati, Andi Nurkholis, Zaenal Abidin, and Heni Sulistiani, “Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 904–910, Oct. 2021, doi: 10.29207/resti.v5i5.3380.

“A New Approach for Evaluation of Data Mining Techniques,” International Journal of Computer Science Issues, vol. 7, no. 5, 2010.

S. Styawati and K. Mustofa, “A Support Vector Machine-Firefly Algorithm for Movie Opinion Data Classification,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 13, no. 3, p. 219, Jul. 2019, doi: 10.22146/ijccs.41302.




DOI: https://doi.org/10.30591/jpit.v7i2.3549

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.