Komparasi Metode Apriori dan FP-Growth Data Mining Untuk Mengetahui Pola Penjualan

Neni Purwati, Yogi Pedliyansah, Hendra Kurniawan, Sri Karnila, Riko Herwanto

Abstract


 Sales data is generally still rarely used, as well as the Perfume Corner shop just piling up in the database, even though there are problems experienced by the store regarding sales data for the best-selling products and to increase the number of sales of subsequent perfume products, so that the store can survive and develop even better. The algorithm that can be used to manage sales data to overcome this problem is Apriori. The research method used in this research is the KDD (Knowledge Discovery in Database) process. This research produces a high frequency pattern for itemsets with a minimum support value of 20% resulting in products that become The Most Tree Items namely Jo Malone 82.49%, Zarra 28.25%, and Zwitsal 20.34%. While the association rules formed from the value of Min. Supp 20% and Min. Conf 80%, get a combination of 2 itemsets, namely Jo Malone and Zarra. Whereas for the combination of 3 itemsets, namely Jo Malone, Zarra and Baccarte with valid and strong status, it is proven by a lift value greater than 1, therefore the association rules are very appropriate to be used.

Keywords


Algoritma Apriori, FP-Growth, KDD, Frequensi Tinggi, Aturan Asosiasi

Full Text:

References


S. A. Miranda, Fahrullah, and D. Kurniawan, “Implementasi Association Rule Dalam Menganalisis Data Penjualan Sheshop dengan Menggunakan Algoritma Apriori,” METIK J., vol. 6, no. 1, pp. 30–36, 2022.

M. H. Santoso, “Application of Association Rule Method Using Apriori Algorithm to Find Sales Patterns Case Study of Indomaret Tanjung Anom,” Brill. Res. Artif. Intell., vol. 1, no. 2, pp. 54–66, 2021, doi: 10.47709/brilliance.v1i2.1228.

J. Choi, Y. Won, and J.-J. Kim, “Association Rule Mining with Apriori Algorithm for Pediatric Foot Disorders,” Wseas Trans. Comput., vol. 21, pp. 66–70, 2022, doi: 10.37394/23205.2022.21.9.

R. Rajab Asaad and R. Masoud Abdulhakim, “The Concept of Data Mining and Knowledge Extraction Techniques,” Qubahan Acad. J., vol. 1, no. 2, pp. 17–20, 2021, doi: 10.48161/qaj.v1n2a43.

R. Anugrah, T. Widiharih, and Sugito, “GUI R UNTUK ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA SUATU PERUSAHAAN E-COMMERCE,” J. GAUSSIAN, vol. 11, no. 2, pp. 278–289, 2022.

A. H. Priyanyo and A. B. Arifa, “IMPLEMENTATION OF MARKET BASKET ANALYSIS WITH APRIORI ALGORITHM IN MINIMARKET,” J. Tek. Inform., vol. 3, no. 5, pp. 1423–1429, 2022.

I. A. P. Saadah, O. Nurdiawan, D. A. Kurnia, and D. R. Amalia, “Klasifikasi Penerima Beasiswa Dengan Menggunakan Algoritma,” J. DATA Sci. Inform., vol. 1, no. 1, pp. 11–15, 2021.

T. Prasetya, J. E. Yanti, A. I. Purnamasari, A. R. Dikananda, and S. Anwar, “Analisis Data Transaksi Terhadap Pola Pembelian Konsumen Menggunakan Metode Algoritma Apriori,” INFORMATICS Educ. Prof., vol. 6, no. 1, pp. 43–52, 2021.

D. A. Silitonga and A. P. Windarto, “Implementasi Market Basket Analysis Menggunakan Assocation Rule Menerapkan Algoritma FP-Growth,” J. Inf. Syst. Res., vol. 3, no. 2, pp. 101–109, 2022.

D. A. Istiqomah, Y. Astuti, and S. Nurjanah, “Implementasi Algoritma FP-Growth Dan Apriori Untuk Persediaan Produk,” JIP (Jurnal Inform. Polinema), vol. 8, no. 2, pp. 37–42, 2022.

T. M. Afriyanti and E. Retnoningsih, “Sistem Rekomendasi Buku Perpustakaan Menggunakan Algoritma Frequent Pattern Growth,” Techno.COM, vol. 21, no. 2, pp. 292–310, 2022.

A. Saxena and V. Rajpoot, “A Comparative Analysis of Association Rule Mining Algorithms,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1099, no. 1, p. 012032, 2021, doi: 10.1088/1757-899x/1099/1/012032.

J. Nikita and S. Vishal, “Data Mining Techniques: A Survey Paper,” IJRET Int. J. Res. Eng. Technol., vol. 2, no. 11, 2013.

P. A. Saputro and G. P. Utama, “Implementasi Asosiasi Data Mining Untuk Korelasi Penjualan Suku Cadang 555 Motor Dengan Algoritma Apriori Implementation Of Data Mining Association For Correlation Of Sales Of 555 Motor Parts With Apriori Algorithm,” no. September, pp. 248–255, 2022.

S. S. Amru and S. Juanita, “Penerapan algoritma apriori untuk rekomendasi penjualan paket lipstik,” JSI J. Sist. Inf., vol. 14, no. 1, 2022, doi: 10.36706/jsi.v14i1.17219.

E. Widiati and K. E. Dewi, “Implementasi Association Rule Terhadap Penyusunan Layout Makanan Dan Penentuan Paket Makanan Hemat Di Rm Roso Echo Dengan Algoritma Apriori,” J. Ilmu Komput. dan Inform., vol. 96, no. 2, pp. 2089–9033, 2014.

M. S. Hamdi, I. G. P. W. W. Wirawan, and F. Bimantoro, “Implementasi Algoritma Apriori Untuk Analisis Transaksi Penjualan Obat ( Studi Kasus : Apotek Gilda Farma 2 ),” J. Teknol. Informasi, Komput. dan Apl. Vol., vol. 4, no. 1, pp. 63–74, 2022.




DOI: https://doi.org/10.30591/jpit.v8i2.4876

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.