Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS

Anisa Nur Syafia, Muhammad Fikri Hidayattullah, Wirmanto Suteddy

Abstract


Sentiment analysis of YouTube boy group BTS comments uses the NLP approach to detect emotional patterns based on two category labels, namely positive and negative. With NLP, positive or negative polarity in an entity can be allocated as well as predicted high and low performance from various classification sentiments. The machine learning algorithms used to measure the accuracy of sentiment analysis developed are the Support Vector Machine and Random Forest algorithms. The steps taken start from the data collection obtained from the BTS YouTube Comment dataset and then go through the data preprocessing stage. Then proceed to the feature extraction stage by converting text into digital vectors or Bag of Words (BOW) and classified using machine learning algorithms until the evaluation stage. From the results comparison of the evaluated algorithms, the accuracy value between the two algorithms is 96% for training data and 85% for data testing using the SVM algorithm, while for the Random Forest algorithm it is 82% for training data and 80% for data testing. This shows that the SVM algorithm produces a higher accuracy value than the Random Forest for sentiment analysis of YouTube boy group BTS comments.

Keywords


NLP, SVM, random forest, machine learning, sentiment analysis, BTS

Full Text:

References


P. A. Permatasari, Linawati and L. Jasa, "Survei Tentang Analisis Sentimen Pada Media Sosial," Majalah Ilmiah Teknologi Elektro, vol. 20, 2021.

M. I. Alrasid and M. I. Gautama, "Daya Tarik BTS Sebagai Brand AmbassadorTokopediadalam Membentuk Perilaku Mahasiswa Berbelanja Online," Jurnal Perspektif: Jurnal Kajian Sosiologi dan Pendidikan, vol. 4, no. 4, pp. 555-566, 2021.

K. Nimala and R. Jebakumar, "Sentiment topic emotion model on students feedback for educational benefits and practices," Behav. Inf.Technol, vol. 40, p. 311–319, 2019.

M. R. Hasan, M. Maliha and M. Arifuzzaman, "Sentiment analysis with NLP on Twitter data," International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), pp. 1-4, 2019.

A. Onan, "Mining opinions from instructor evaluation reviews: A deep learning," Comput. Appl. Eng. Educ., vol. 28, p. 117–138, 2020.

G. Khanvilkar and D. Vora, "Product Recommendation using Sentiment Analysis of Reviews: A Random Forest Approach," International Journal of Engineering and Advanced Technology (IJEAT), vol. 8, no. 2S2, pp. 146-152, 2019.

D. Darwis, E. S. Pratiwi and A. F. O. Pasaribu, "PENERAPAN ALGORITMA SVM UNTUK ANALISIS SENTIMEN PADA DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA," Jurnal Ilmiah Edutic, vol. 7, no. 1, 2020.

D. Alita and R. Auliya, "Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random," Jurnal Komputasi, vol. 8, no. 2, pp. 50-58, 2020.

M. R. Adrian, M. P. Putra, M. H. Rafialdy and N. A. Rakhmawati, "Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB," JURNAL INFORMATIKA UPGRIS, vol. 7, no. 1, pp. 36-40, 2021.

R. Puspita and A. Widodo, "Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS," Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, pp. 646-654, 2020.

W. Suteddy, D. A. R. Agustini, A. Adiwilaga and D. A. Atmanto, "End-To-End Evaluation of Deep Learning Architectures for Offline Handwriting Writer Identification: A Comparative Study," INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION, vol. 7, no. 1, pp. 178-185, 2023.

Y. Ying, ,. L. Wang, H. Huang and Yang, "An Improved Random Forest Algorithm," Journal of Physics: Conference Series, 2020.

D. Pajri, Y. Umaidah and T. N. Padilah, "K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia," Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, pp. 242-253, 2020.

P. Y. Saputra, D. H. Subhi and F. Z. A. Winatama, "IMPLEMENTASI SENTIMEN ANALISIS KOMENTAR CHANNEL VIDEO PELAYANAN PEMERINTAH DI YOUTUBE MENGGUNAKAN ALGORITMA NAÏVE BAYES," Jurnal Informatika Polinema, vol. 5, no. 3, pp. 209-213, 2019.

M. P. Munthe, A. S. R. Ansori and R. R. Septiawan, "Analisis Sentimen Komentar Pada Saluran Youtube Food Vlogger Berbahasa Indonesia Menggunakan Algoritma Naïve Bayes," e-Proceeding of Engineering, vol. 8, no. 6, 2021.

I. A. E. D. Udayana, I. G. I. Sudipa and Risaldi, "Sentimen Analisis Inisiatif Vaksin Nasional Menggunakan Naïve Bayes dan Laplacian Smoothing Pada Komentar Video Youtube," JURNAL RESISTOR, vol. 5, no. 2, 2022.

"BTS YouTube Comments," 13 September 2022. [Online]. Available: https://www.kaggle.com/datasets/seungguini/bts-youtube-comments. [Accessed 2022].

S. Juniarsih, E. F. Ripanti and E. E. Pratama, "Implementasi Naive Bayes Classifier pada Opinion Mining Berdasarkan Tweets Masyarakat Terkait Kinerja Presiden dalam Aspek Ekonomi," Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 8, no. 3, pp. 239-249, 2020.

J. Joseph and J. R. Jeba, "Information Extraction using Tokenization And Clustering Methods," International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 4, pp. 3690-3692, 2019.

A. Siswandi, A. Y. Permana and A. Emarilis, "Stemming Analysis Indonesian Language News Text..

M. Geetha and D. K. Renuka, "Improving the performance of aspect based sentiment analysis using," International Journal of Intelligent Networks, vol. 2, pp. 64-69, 2021.

Z. Kastrati, F. Dalipi, A. S. Imran, K. Pireva Nuci and M. A. Wani, "Sentiment analysis of students’ feedback with NLP and deep learning: A systematic mapping study," Applied Sciences, vol. 11, no. 9, p. 3986, 2021.

G. Khanvilkar and P. D. Vora, "Sentiment Analysis for Product Recommendation Using Random Forest," International Journal of Engineering & Technology, vol. 7, no. 3, pp. 87-89, 2018.

I. Klyueva, "Improving Quality of the Multiclass SVM Classification Based on the Feature Engineering," Proc. - 2019 1st Int. Conf. Control Syst. Math. Model. Autom. Energy Effic. SUMMA, p. 491–494, 2019.




DOI: https://doi.org/10.30591/jpit.v8i3.5064

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Terindeks oleh :