Klasifikasi Nasabah Potensial menggunakan Algoritma Ensemble Least Square Support Vector Machine dengan AdaBoost
Abstract
Keywords
References
Q. Zhuang and Y. Yao, “Application of data mining in term deposit marketing,” iaeng.org, 2018, Accessed: Mar. 08, 2022. [Online]. Available: http://www.iaeng.org/publication/IMECS2018/IMECS2018_pp707-710.pdf.
T. Parlar and A. SK, “Using data mining techniques for detecting the important features of the bank direct marketing data,” Int. J. Econ. Financ. Issues, vol. 7, no. 2, pp. 692–696, 2017, Accessed: Mar. 08, 2022. [Online]. Available: https://dergipark.org.tr/en/pub/ijefi/issue/32035/354551?publisher=http-www-cag-edu-tr-ilhan-ozturk.
P. Ruangthong, S. J.-2015 12th I. Joint, and undefined 2015, “Bank direct marketing analysis of asymmetric information based on machine learning,” ieeexplore.ieee.org, Accessed: Mar. 08, 2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7219777/.
J. Asare-Frempong and M. Jayabalan, “Predicting customer response to bank direct telemarketing campaign,” ieeexplore.ieee.org, 2017, doi: 10.1109/ICE2T.2017.8215961.
O. Apampa, “Evaluation of classification and ensemble algorithms for bank customer marketing response prediction,” J. Int. Technol. Inf. Manag., vol. 25, 2016, Accessed: Mar. 08, 2022. [Online]. Available: https://scholarworks.lib.csusb.edu/jitim/vol25/iss4/6/.
A. Mutoi Siregar, S. Faisal, H. H. Handayani, and A. Jalaludin, “Classification Data for Direct Marketing using Deep Learning,” Sci. Jounal PPI-UKM, vol. 7, no. 2, 2020, doi: 10.27512/sjppi-ukm/se/a15052020.
J. Che, S. Zhao, and Y. Li, “Bank telemarketing forecasting model based on t-SNE-SVM,” scirp.org, 2020, Accessed: Mar. 08, 2022. [Online]. Available: https://www.scirp.org/journal/paperinformation.aspx?paperid=100260.
M. Selma, “Predicting the success of bank telemarketing using Artificial Neural Network,” Int. J. Econ., 2020, Accessed: Mar. 08, 2022. [Online]. Available: https://publications.waset.org/10010974/predicting-the-success-of-bank-telemarketing-using-artificial-neural-network.
D. Grzonka, G. Suchacka, B. B.-I. S. in, and undefined 2016, “Application of selected supervised classification methods to bank marketing campaign,” yadda.icm.edu.pl, vol. 5, no. 1, pp. 36–48, 2016, Accessed: Mar. 08, 2022. [Online]. Available: https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.desklight-3c731462-b2de-4c6d-9e43-95ccf418785f.
A. Lawi, A. A. Velayaty, and Z. Zainuddin, “On Identifying Potential Direct Marketing Consumers using Adaptive Boosted Support Vector Machine,” in Proceedings of the 2017 4th International Conference on Computer Applications and Information Processing Technology, CAIPT 2017, Aug. 2018, pp. 1–4, doi: 10.1109/CAIPT.2017.8320691.
L. Zhou and K. Lai, “Least squares support vector machines ensemble models for credit scoring,” Elsevier, 2010, Accessed: Mar. 08, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957417409004394.
C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, 1998, doi: 10.1023/A:1009715923555.
J. Suykens and J. V. Letters, “Least squares support vector machine classifiers,” Springer, vol. 9, pp. 293–300, 1999, Accessed: Mar. 08, 2022. [Online]. Available: https://link.springer.com/article/10.1023/A:1018628609742.
F. Schwenker, “Ensemble methods: Foundations and algorithms,” ieeexplore.ieee.org, 2022, Accessed: Mar. 08, 2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6410720/.
R. Schapire, “Boosting: Foundations and algorithms,” emerald.com, 2013, Accessed: Mar. 08, 2022. [Online]. Available: https://www.emerald.com/insight/content/doi/10.1108/03684921311295547/full/html.
R. Kohavi, “Guest editors’ introduction: On applied research in machine learning.”
DOI: https://doi.org/10.30591/jpit.v8i3.5675
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
JPIT INDEXED BY
This work is licensed under a Creative Commons Attribution 4.0 International License.