Analisis Sentimen Terhadap Calon Presiden Indonesia 2024 dengan Metode Extreme Gradient Boosting (XGBOOST)

Yulistiani Yulistiani, Styawati Styawati

Abstract


In 2024, Indonesia will implement democracy in the election of the Indonesian head of state. Any political figure who runs for head of state and calculates his popularity based on public opinion. After the General Election Commission (KPU) released the names of the 2024 Indonesian presidential candidates, these names were widely discussed, especially on social networks, one of which was Twitter. Twitter or what is often called X is a platform that provides short, concise and clear information. Twitter users responding to the 2024 presidential candidate have different opinions on Twitter. The sentiments used are positive, negative and neutral. The method used to analyze public opinion with data processed on Twitter social media uses Extreme Gradient Boosting (XGBOOST), classifying tweet test data in the form of classification with prediction output with accurate values. This research takes Twitter data to see public opinion on presidential candidates. The aim of this research is to determine the process of digital text analysis and the application of the XGBOOST method to Twitter user sentiment in two categories (positive and negative) and three categories (positive, negative and neutral) for each candidate, namely Ganjar Pranowo, Anies Baswedan and Prabowo Subianto. The results show an accuracy of 0.96%, precision of 0.96% and recall of 0.97%.


Keywords


Politics, Twitter, Presidents, Sentiment Analysis, XGBOOST.

Full Text:

References


.Rauta, “Menggagas Pemilihan Presiden yang Demokratis dan Aspiratif,” J. Konstitusi, vol. 11, no. 3, p. 600, 2016, doi: 10.31078/jk11310.

J. T. Informasi, “Rizka Ardiansyah,” Sci. Comput. Sci. Informatics J., vol. 2, no. 1, 2019.

R. Ardiansyah, “Analisis Sentimen Calon Presiden Dan Wakil Presiden Periode 2019-2024 Pasca Debat Pilpres Di Twitter,” Sci. Comput. Sci. Informatics J., vol. 2, no. 1, p. 21, 2019, doi: 10.22487/j26204118.2019.v2.i1.13068.

P. Widyaningrum, Y. Ruldeviyani, and R. Dharayani, “Sentiment analysis to assess the community’s enthusiasm towards the development chatbot using an appraisal theory,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 723–730. doi: 10.1016/j.procs.2019.11.176.

V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm,” Procedia Comput. Sci., vol. 161, pp. 765–772, 2019, doi: 10.1016/j.procs.2019.11.181.

S. Styawati, N. Hendrastuty, and A. R. Isnain, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021, doi: 10.30591/jpit.v6i3.2870.

S. Sari, U. Khaira, P. Pradita, and T. S. Tri, “… Beauty Shaming Di Media Sosial Twitter Menggunakan Algoritma SentiStrength: Sentiment Analysis Against Beauty Shaming Comments on Twitter Social Media …,” Indones. J. …, vol. 1, no. 1, pp. 71–78, 2021, [Online].Available:

https://journal.irpi.or.id/index.php/ijirse/article/view/55%0Ahttps:// journal.irpi.or.id/index.php/ijirse/article/download/55/24

A. Z. Malik, E. Utami, and S. Raharjo, “Analisis Sentiment Twitter Terhadap Capres Indonesia 2019 dengan Metode K-NN,” J. Inf. Politek. Indones. Surakarta, vol. 5, no. 2, pp. 1–7, 2019.

H. Lawelai, A. Sadat, and A. Suherman, “Democracy and Freedom of Opinion in Social Media: Sentiment Analysis on Twitter,” PRAJA J. Ilm. Pemerintah., vol. 10, no. 1, pp. 40–48, 2022, doi: 10.55678/prj.v10i1.585.

B. Haryanto, Y. Ruldeviyani, F. Rohman, T. N. Julius Dimas, R. Magdalena, and F. Muhamad Yasil, “Facebook analysis of community sentiment on 2019 Indonesian presidential candidates from Facebook opinion data,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 715–722. doi: 10.1016/j.procs.2019.11.175.

B. Delvika, N. Abror, and U. R. Gurning, “Perbandingan Algoritma NBC dan C4. 5 Dalam Analisa Sentimen Pemilihan Presiden 2024 Pada Twitter: Comparison of the NBC and C4. 5 Algorithms in Sentiment …,” SENTIMAS Semin. Nas. …, pp. 41–48, 2023, [Online].

I. Rifky Hendrawan, E. Utami, A. Dwi Hartanto, and H. Cipta, “Edukatif: Jurnal Pendidikan Informatika Perbandingan Algoritma Naïve Bayes dan XGBoost pada Klasifikasi Teks Ulasan Produk Lokal,” vol. 6, no. 1, pp. 143–149, 2022, doi: 10.29408/edumatic.v6i1.5.

A. N. Rachmi, “Implementasi Metode Random Forest Dan Xgboost Pada Klasifikasi Customer Churn,” pp. 1–101, 2020.

I. R. Hendrawan, E. Utami, and A. D. Hartanto, “Comparison of Naïve Bayes Algorithm and XGBoost on Local Product Review Text Classification,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 143–149, Jun. 2022, doi: 10.29408/edumatic.v6i1.5613.

R. Dwiyansaputra and A. Aranta, “Analisis Sentimen Masyarakat Terhadap Kebijakan Penerapan Ppkm Di Media Sosial Twitter Dengan Menggunakan Metode Xgboost,” p. 10, 2021.

M. Nur, A. Singgih, P. S. Statistika, and U. I. Indonesia, “No Title,” pp. 0–1, 2022.

G. Fatouros, J. Soldatos, K. Kouroumali, and G. Makridis, “Machine Learning with Applications Transforming sentiment analysis in the financial domain with ChatGPT,” Mach. Learn. with Appl., vol. 14, no. October, p. 100508, 2023, doi: 10.1016/j.mlwa.2023.100508.

M. S. M. Suhaimin, “No Title,” J. King Saud Univ. – Comput. Inf. Sci. 35 101776, vol. 1319–1578, p. 25, 2023, [Online]. Available: https://pdf.sciencedirectassets.com/280416/1-s2.0- S1319157823X0010X/1-s2.0-S1319157823003300/main.pdf?X- Amz-Security- Token=IQoJb3JpZ2luX2VjEAAaCXVzLWVhc3QtMSJHMEUCI EBRfmnMkb2j8ut2p46cc2y6emk9Jl4srBYEgaVRmPS%252FAiE AtKpadf9qZgbW0vxfxuG0FxR2CXU8iGh9M9VZ6T36r%25

Y. Nurtikasari, Syariful Alam, and Teguh Iman Hermanto, “Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes,” INSOLOGI J. Sains dan Teknol., vol. 1, no. 4, pp. 411–423, 2022, doi: 10.55123/insologi.v1i4.770.




DOI: https://doi.org/10.30591/jpit.v9i3.6127

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.