Analisis Opini Publik Tentang Boikot Produk Pro-Israel di Twitter Berbahasa Indonesia Menggunakan Metode SVM

Chairunnisa fadia alifa, Debby Alita

Abstract


The century-long Israeli-Palestinian conflict has created diverse opinions in Indonesian society. The escalation of tensions in Gaza triggered calls for boycotts of products suspected of supporting Israel. In this study, a Support Vector Machine (SVM) method is used to analyze sentiment on Twitter related to pro-Israel boycotts. By understanding public opinion, this study evaluates the performance of SVM with linear kernel and RBF. Data collection was done through crawling Twitter with the keyword "Pro-Israel boycott", resulting in 2600 data. Data preprocessing involved case folding, cleaning, stopwords, stemming, and TF-IDF weighting. Manual labeling was done for 1560 support data and 1040 non-support data. Implementation of the SVM model resulted in 92.5% accuracy for the linear kernel and 91.92% for the RBF kernel. Word cloud analysis provided visualization of key words and sentiments related to the boycott. This research shows the dominance of positive sentiment with 1560 positive tweets and 1040 negative tweets. For development, it is recommended to add sentiment analysis methods, use a wider dataset, and consider supporting variables to improve accuracy and understanding of public sentiment on the issue.

Keywords


Konfik Pro-Israel, Boikot, Sentimen Masyarakat, Twitter, Support Vector Machine (SVM)

Full Text:

References


Tim Redaksi, “Simak! Sejarah Panjang & Kronologi Konflik Palestina-Israel,” cnbcindonesia.com. Accessed: Nov. 05, 2023. [Online]. Available: https://www.cnbcindonesia.com/news/20231105141151-4-486511/simak-sejarah-panjang-kronologi-konflik-palestina-israel

A. Tiara Susilawati, A. H. Tiara Susilawati Universitas Muhammadiyah Kalimantan Timur Nur Anjeni Lestari Universitas Muhammadiyah Kalimantan Timur Puput Alpria Nina Universitas Muhammadiyah Kalimantan Timur Jl Ir Juanda No, K. Samarinda Ulu, K. Samarinda, and K. Timur, “Analisis Sentimen Publik Pada Twitter Terhadap Boikot Produk Israel Menggunakan Metode Naïve Bayes,” J. Ilm. Mhs., vol. 2, no. 1, pp. 26–35, 2024, [Online]. Available: https://doi.org/10.59603/niantanasikka.v2i1.240

Azharun N, “Fatwa Terbaru MUI Nomor 83 Tahun 2023: Mendukung Agresi Israel ke Palestina Hukumnya Haram,” mui.or.id. Accessed: Nov. 10, 2023. [Online]. Available: https://mui.or.id/baca/berita/fatwa-terbaru-mui-nomor-83-tahun-2023-mendukung-agresi-israel-ke-palestina-hukumnya-haram

M. F. Arfat, S. Styawati, A. Nurkholis, and I. Kurniawan, “Analisis Sentimen Masyarakat Indonesia Terkait Vaksin Covid-19 Pada Media Sosial Twitter Menggunakan Metode Support Vector Machine (Svm),” J. Inform. J. Pengemb. IT, vol. 7, no. 2, pp. 96–103, 2022, doi: 10.30591/jpit.v7i2.3549.

A. Novantirani, M. K. Sabariah, and V. Effendy, “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine,” e-Proceeeding Eng., vol. 2, no. 1, pp. 1–7, 2015.

F. Rochmah, A. Machmud, M. A. Mufid, and N. A. Kuswoyo, “Triwikrama: Jurnal Multidisiplin Ilmu Sosial,” vol. 01, no. 4, pp. 23–40, 2023, [Online]. Available: https://tafsirweb.com/99011-surat-al-qalam-ayat-4.html

H. Irsyad and A. Taqwiym, “Sentimen Analisis Masyarakat Terhadap Rakyat Palestina dengan Klasifikasi Naive Bayes.”

H. Ramanizar, A. Fajri, R. Binsar Sinaga, H. Mubarok, A. D. Pangestu, and D. S. Prasvita, “Analisis Sentimen Pengguna Twitter terhadap Konflik antara Palestina dan Israel Menggunakan Metode Naïve Bayesian Classification dan Support Vector Machine,” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, no. September, pp. 166–175, 2021.

A. N. Utama, R. M. Hidayat, and P. T. Kesuma, “Analisis Hukum Pencegahan Hoax terhadap Fatwa MUI Terkait Boikot Produk dan Pendidikan Kesadaran Publik dalam Era Digital,” vol. 7, pp. 30323–30334, 2023.

A. J. Audra Laili, Muhammad Iqbal Fasa, “ANALISIS HUKUM EKONOMI SYARI’AH TERHADAP PEMBOIKOTAN PRODUK ISRAEL,” J. Ekon. Syariah, vol. Vol. 2. No, 2021.

H. R. Alhakiem and E. B. Setiawan, “Aspect-Bas1ed Sentiment Analysis on Twitter Using Logistic Regression with FastText Feature Expansion,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 5, pp. 840–846, 2022, doi: 10.29207/resti.v6i5.4429.

D. Alita, Y. Fernando, and H. Sulistiani, “Implementasi Algoritma Multiclass Svm Pada Opini Publik Berbahasa Indonesia Di Twitter,” J. Tekno Kompak, vol. 14, no. 2, p. 86, 2020, doi: 10.33365/jtk.v14i2.792.

S. Ernawati and R. Wati, “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel,” J. Khatulistiwa Inform., vol. 6, no. 1, pp. 64–69, 2018.

M. S. Anwar, I. M. I. Subroto, and S. Mulyono, “Sistem Pencarian E-Journal Menggunakan Metode Stopword Removal dan Stemming,” Pros. Konf. Ilm. Mhs. UNISSULA 2, pp. 58–70, 2019, [Online]. Available: http://lppm-unissula.com/jurnal.unissula.ac.id/index.php/kimueng/article/viewFile/8420/3887

Fatihah Rahmadayana and Yuliant Sibaroni, “Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 936–942, 2021, doi: 10.29207/resti.v5i5.3457.

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.

R. K. Putri and M. Athoillah, “Support Vector Machine Untuk Identifikasi Berita Hoax Terkait Virus Corona (Covid-19),” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 162–167, 2021, doi: 10.30591/jpit.v6i3.2489.

M. Ghazali and R. Purnamasari, “Pencarian Kernel Terbaik Support Vector Regression Pada Kasus Data Kemiskinan Di Indonesia Dengan User Interface (Gui) Matlab,” Statistika, vol. 9, no. 1, pp. 1–8, 2021.




DOI: https://doi.org/10.30591/jpit.v9i2.6559

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.