Analisis Sentimen Twitter Terhadap Pemindahan Ibu Kota Negara Menggunakan Support Vector Machine

Gita Aprinda Saputri, Debby Alita

Abstract


The Indonesian government announced plans to move the capital from Jakarta to East Kalimantan due to the high population burden and economic contribution on the island of Java. Statistical data shows that the island of Java has a large population, reaching 151.59 million people or around 56.10% of the total population of Indonesia, and will provide a large participation in national GDP in 2021. Moving the capital city is seen as a step. . for the sake of equal distribution of population and economy throughout Indonesia. Rapid urbanization on the island of Java, especially in the buffer areas of the capital city of Jakarta, is one of the main reasons behind this decision. This research uses data from the social media platform Twitter to analyze sentiment using 2 categories, namely positive and negative sentiment regarding the relocation of the National Capital, analyzed using the Support Vector Machine method. In this study, the SVM kernel type was used, namely a linear kernel with an accuracy of 92.70%, then improved with Stratified k-Fold Cross Validation, getting 100% accuracy in iterations 1 and 5. The classification results using the Support Vector Machine method are statedthat the linear kernel has better accuracy. This sentiment analysis provides insight into the public's views on the proposed measure. This research can be used as material for consideration of future government policy regarding relocating the capital city.

Keywords


Pemindahan ibu kota, Pulau Jawa, Kalimantan Timur, analisis sentimen, Support Vector Machine (SVM), kernel.

Full Text:

References


A. Ernawati, J. Wahyudi, A. D. Astuti, and S. Q. Aini, “Analisis Kelayakan Pendirian Usaha Pengolahan Limbah Medis untuk Meningkatkan Pendapatan Asli Daerah,” Jurnal Ekonomi dan Kebijakan Publik, vol. 13, no. 1, pp. 57–70, 2022, doi: 10.22212/jekp.v13i1.2155.

Devina Ocsanda and Candrika Ilham Wijaya, “Oportunitas Pembentukan Entitas Kebudayaan Baru,Tinjauan Terhadap Ibu Kota Negara (Ikn) Indonesia 2024Berdasarkan Sejarah Perpindahan Ibu Kota Voc 1619,” Jurnal Kebijakan Pembangunan, vol. 18, pp. 1–12, 2023.

S. Hasan, “Strategi Perpindahan Ibu Kota Negara (IKN) Ditinjau dari Perspektif Pertahanan Maritim,” Jurnal SOSIO DIALEKTIKA, vol. 8, no. 1, pp. 117–138, 2023, doi: 10.31862/9785426311961.

S. Aripiyanto, T. Tukino, A. Sufyan, and R. Nandaputra, “Sentimen Analisis Twitter Ibu Kota Negara Nusantara Menggunakan Long Short-Term Memory dan Lexicon Based,” EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, vol. 12, no. 2, p. 119, 2022, doi: 10.36448/expert.v12i2.2821.

D. J. Putnarubun and C. F. Palembang, “PENERAPAN METODE MACHINE LEARNING-NAIVE BAYES PADA ANALISIS SENTIMEN PEMINDAHAN IBU KOTA NEGARA BARU Implementation of Machine Learning-Naïve Bayes Method to Sentiment Analysis of New Country Capitals,” JURNAL MATEMATIKA, STATISTIKA DAN TERAPANNYA, vol. 02, no. 01, pp. 57–66, 2023.

Ramadhany Nugroho and Erna Setijaningrum, “Indonesia’s New Capital: An Analysis Of Transparency, Public Participation, And Deliberative Democracy,” Journal of Namibian Studies : History Politics Culture, vol. 35, pp. 1842–1874, 2023, doi: 10.59670/jns.v35i.3904.

E. Sukmana and A. Azizah, “New Capital City of Indonesia, an Opportunity or Threat for Ecotourism Resilience in East Borneo,” Journal of Disaster Research, vol. 19, no. 1, pp. 214–225, 2024, doi: 10.20965/jdr.2024.p0214.

A. Kurniawan and S. Waluyo, “Penerapan Algoritma Naive Bayes Dalam Analisis Sentimen Pemindahan Ibukota Pada Twitter Application Of Naive Bayes Algorithm In Capital Movement Sentiment Analysis On Twitter,” Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI) Jakarta-Indonesia, no. September, pp. 455–461, 2022.

D. A. Puspitasari, “Tracing Trends and Patterns of IKN Words in Media and Twitter: A Linguistic Corpus Study (Menelusuri Tren dan Pola Kata IKN di Media dan Twitter: Kajian Korpus Linguisti),” Gramatika STKIP PGRI Sumatera Barat, vol. 9, no. 2, pp. 239–257, 2023, doi: 10.22202/jg.2023.v9i2.6947.

H. Hamjen and L. R. Said, “Exploring Research Trends in the Indonesian Archipelago ’ s New National Capital,” Journal of International Conference Proceedings (JICP), vol. 6, no. 7, pp. 125–135, 2023.

H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” Jurnal Sistem Informasi dan Informatika (Simika), vol. 5, no. 1, pp. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.

A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” Jurnal Data Mining dan Sistem Informasi, vol. 2, no. 1, p. 31, 2021, doi: 10.33365/jdmsi.v2i1.1021.

A. M. Pravina, I. Cholissodin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 2789–2797, 2019.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” Jurnal Media Informatika Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.

I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura Journal of Electrical and Electronics Engineering, vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.

A. Aziz, “Analisis Sentimen Identifikasi Opini Terhadap Produk, Layanan dan Kebijakan Perusahaan Menggunakan Algoritma TF-IDF dan SentiStrength,” Abdul Aziz, 2022.

N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” vol. 6, no. 3, 2021, [Online]. Available: http://situs.com

A. S. Rahayu, A. Fauzi, and R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 349, Dec. 2022, doi: 10.30865/json.v4i2.5398.

M. Furqan, S. Mayang Sari, and P. Ilmu Komputer Fakultas Sains dan Teknologi, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia Sentiment Analysis using K-Nearest Neighbor towards the New Normal During the Covid-19 Period in Indonesia,” 2022. [Online]. Available: www.tripadvisor.com

E. Febriyani and H. Februariyanti, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Algoritma Naive Bayes Classifier Di Twitter,” vol. 17, no. 1.




DOI: https://doi.org/10.30591/jpit.v9i3.6612

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.