Segementasi Nasabah Tabungan Pada BMT XXX dengan Metode Fuzzy C Means dan Model RFM

Arief Soma Darmawan, Devi Sugianti, Anas Syaifudin

Email: ariefsoma24@gmail.com STMIK Widya Pratama Pekalongan

Abstrak

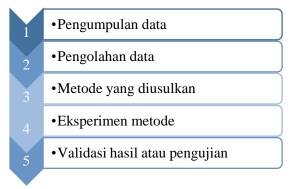
Setiap perusahaan akan berlomba lomba untuk meningkatkan pelayanan kepada pelanggan, agar pelanggan tidak berpindah ke pesaing. BMT XXX juga tidak menginginkan nasabahnya berpindah ke pesaing. Pada tahun 2019 nasbah BMT XXX mencapai 4882 nasabah, akan tetapi yang aktif melakukan transaksi penabungan hanya 1392 nasabah. BMT mengalami kesulitan dalam menginterpretasikan data, karena data yang tersaji dalam bentuk manual. Untuk membantu BMT dalam mengelompokkan nasabah yang potensial menggunakan metode *fuzzy C Means* dan model RFM (*Recency, Frequency*, dan *Monetary*). Metode *Fuzzy C means* digunakan karena dapat menggelompokkan data yang lebih besar dan lebih kokoh pada data oulier, dalam menentukan cluster atau kelompok dengan derajat keanggataan. Langkah langkah metode penelitian yang dilakukan adalah pengumpulan data, pengolahan data, metode yang diusulkan, eksperimen metode, validasi hasil atau pengujina. Hasil pengujian dengan *Davies Bouldin Index* diperoleh 0,464 dengan jumlah klaster sebanyak 6. Dengan kelas nasbah *superstar* sebanyak 79 nasabah, *golden* sebanyak 462 nasabah, *typical customer* 124 nasabah, *occantional customer* sebanyak 271 nasabah, *everyday sopper* 239 nasabah, *dormant cusomer* 217 nasabah. Dengan adanya data tersebut dapat digunakan oleh BMT XXX pengambilan keputusan dalam hal menentukan strategi marketing untuk meningkatkan pelanggan agar pelanggan selalu aktif melakukan penabungan

Kata Kunci: Segementasi nasabah, fuzzy c means, RFM

1. Pendahuluan

Perusahaan modern sekarang berfokus pada strategi yang mengutamakan pelanggan dari pada mengutamakan produk. Karena setiap perusahaan di tuntut agar siap menghadapi para pesaing dengan perusahaan lain. [1]. Karakteristik pelanggan harus dipertimbangkan oleh untuk informasi pengembangan perusahaan produk yang sesuai dengan keinginan pelanggan [2]. Perusahaan harus melindungi pelanggan yang potesial agar tidak berpindah ke pesaing. Dalam mempertahankan pelanggan yang dimiliki oleh perusahaan, merupakan hal yang sangat penting. [3]. Nasabah dalam lembaga keuangan mikro mempunyai nilai yang berbeda, tantangan yang dihadapai adalah pengetahuan memahami perbedaan nasabah yang potensial agar nasabah loyal terhadap perusahaan [4]

Pada BMT XXX memiliki jumlah nasabah sebanyak 4882 pada tahun 2019. Nasabah setiap tahunnya selalu meningkat, akan tetapi transaksi pada tahun 2019 yang aktif melakukan penabungan sebesar 1392 nasabah. Untuk mengidentifikasi nasabah yang potensial BMT XXX mengalami kesulitan karena menggunakan data secara manual, maka membutuhkan waktu


yang lama untuk dapat mengiterpretasikan data tersebut. Untuk mengidentifikasi pelanggan dan menciptakan pengetahuan pelanggan maka bisa menggunakan proses CRM. Perbankan dipaksa untuk memperbaiki kinerja untuk meningkatkan palayanan pelanggan [5]. Ujung tombak dari suatu bisnis adalah menjalin hubungan baik dengan pelanggan karena sebagai salah satu stakeholders, itu adalah konsep dari CRM [6]. mining dapat menyelesaikan pengelompokkan nasabah. Data mining dapat mengekstraksi atau penggalian data untuk mendapatkan infromasi yang berguna untuk penggambilan keputusan bisnis [7]. Pengelompokkan nasabah potensial dengan menggunakan algoritma fuzzy C menas. Fuzzy C menas dipilih karena bersifat samar, dimana satu objek dapat menjadi anggota di beberapa cluster serta batasan cluster. Fuzzy C Means memiliki derajat keanggotaan antra 0 sampai dengan 1 ditiap titik data [8].

Dalam penentuan *cluster* nasabah pada BMT XXX dilakukan dengan model RFM (*Recency*, *Frequency*, dan *Monetary*) dari data transaksi penabungan. *Recency* merupakan jarak dari

terakhir transaksi dengan pengambilan data, frequency tingkat keseringan nasabah melakukan transaksi, Monetary jumlah nominal transaksi nasabah dalam melakukan penabungan [9] Dari permasalahan yang dialami oleh BMT XXX mengenai pengelompokkan nasabah maka akan dilakukan penelitian potensial deangan judul Segementasi nasabah tabungan pada BMT XXX dengan metode Fuzzy C Means dan model RFM untuk. Fuzzy C Menas dapat menentukan jumlah cluster yang akan dibentuk, tujuan dari penelitian ini adalah mengkaji unjuk kerja fuzzy C Means dalam pembentukan cluster nasabah potensial, sehingga dapat digunakan sebagai bahan pertimbangan untuk pengambilan keputusan manajemen.

2. Metode Penelitian

Tahapan penelitian yang dilakukan menggunakan metode eksperimen dengan tahapan peneiltian sebagai berikut:

3. Hasil dan Pembahasan

3.1 Pengumpulan data

Pada tahap ini melakukan pengumpulan data transaksi penabungan pada tahun 2019 dari bulan januari sampai dengan bulan desember. Terdapat 4.882 nasabah dengan jumlah transaksi 35.517 untuk setoran.

3.2 Pengolahan awal data

Dari transaksi data setoran yang diperoleh sebanyak 35.517 transakasi, dilakukan pengolahan awal dengan mengelompokkan per nasabah. Dari pengelompokkan nasabah diperoleh sebanyak 1.392 nasabah.yang aktif melakukan penabungan. Untuk mengetahui segementasi nasabah ini menggnuakan model RFM (*Recency*, *Frequency*, dan *Monetary*).

Recency interval antara penabungan terakhir dengan pengambilan data. Pengambilan data dilakukan pada 1 Januari 2020 dan dinyatakan dalam satuan hari. Untuk perhitungan frequency dengan menjumlahkan transaksi penabungan untuk setiap nasabah dalam 1 tahun. Sedangkan monetary merupakan jumlah saldo setiap nasabah sampai di tgl 31 Desember 2019. Data nasabah tersebut dibagi menjadi 6 kelompok dengan rincian sebagai berikut:

Tabel 1. Karakter pelanggan berdasrkan nilai RFM

Keterangan nasabah	Karakteristik nasabah			
Superstar	Pelanggan dengan loyalitas yang tinggi			
	2. Mempunyai nilai Monetary yang paling			
	tinggi			
	Mempunyai Frequency yang paling tinggi			
	Mempunyai transaksi paling tinggi			
Golden	Mempunyai nilai Monetary tertinggi yang			
	ke dua			
	Frequency yang tinggi			
	Mempunyai rata-rata transaksi			
Typical Customoer	Mempunyai rata-rata nilai Monetary dan rata-			
	rata transaksi			
Occantional customer	1. Nilai monetary terendah kedua setelah			
	golden customer			
	Nilai recency paling rendah			
	Transaksi paling tinggi			
Everyday shopper	Memiliki peningkatan transaksi			
	Transaksi yang paling rendah			
	3. Mempunyai nilai monetary sedang sampai			
	rendah			
Dormant customer	1. Mempunyai frekuensi dan monetary yang			
	paling rendah			
	Nilai recency yang paling rendah			

3.3 Metode yang diusulkan

Metode yang diusulkan adalah Fuzzy C Means, Fuzzv \boldsymbol{C} Means merupakan teknik penglompokkan data, derajat keanggotaan menentukan suatu kelompok (cluster). Setiap objek dapat menjadi anggota dari beberapa cluster. Fuzzy C Means dapat memiliki kemampuan pengelompokkan data yang lebih besar dan lebih kokoh pada data outlier. [10]. Algoritama

$$J_t = \sum_{i=1}^{N} \sum_{j=1}^{C} \mu_{ij}^m ||x_i - C_j||^2 \dots (1)$$

Dimana:

m (m>1) adalah skalar yang disebut eksponen pembobotan dan mengontrol ketidakjelasan (fuzzyness) klaster, m diatur ke nilai 2.00.

 $\mu_{ij}=$ derajat keanggotaan dari xi di dalam klaster j

 x_i : dimensi data

 c_i : dimensi pusat klaster

 $\parallel x_i - c_j \parallel$: Euclidean distance antara xi dan cj

Secara umum, pengukuran jarak titik data (xi) ke pusat klaster (cj) didasarkan pada pengukuran kemiripan.Salah satu pengukuran yang digunakan adalah *Euclidean distance* yang ditunjukkan pada persamaan (2)

$$||x_i - c_j|| = \sqrt{\sum_{j=1}^{c} (x_i - c_j)^2}$$
(2)

Algoritma Fuzzy c-means ditunjukkan dalam Gambar 1.

```
1. Menentukan data yang akan di klaster X, berupa matriks berukuran n x m (n=jumlah sampel data, m = atribut setiap data). Xij = data sampel ke-i (i=1,2,...,n), atribut ke-j (j=1,2,...,m).

2. Inisialisasi:

a. Jumlah cluster = c
b. Pangkat = w
c. Makrimum interasi = MaxIter
d. Error terkecil yang diharapkan = \xi
e. Fungsi objektif awal = Po= 0
f. Iterasi awal = t=1

3. Membangkitkan bilangan random Ui , i=1,2,3 ..., n; k=1,2,3 ..., c; sebagai elemen-elemen matriks partisi awal U. Menghitung jumlah setiap kolom:
Q_i = \sum_k = 1 \mu_{ik}
dengan j=1,2,...n.
\mu_{ik} = \frac{\mu_{ik}}{Q_i}
4. menghitung pusat cluster ke-k: Vkj , dengan k=1,2,...cidan j=1,2,...m
V_{kj} = \frac{\sum_{i=1}^{n} ((\mu_{ik})^{w} + x_{ij})}{\sum_{i=1}^{n} ((\mu_{ik})^{w} + x_{ij})}
5. menghitung fungsi objektif pada interasi ke-t:
P_i = \sum_{i=1}^{N} \sum_{j=1}^{n} (\mu_{ij})^{w} ||x_i - c_j||^2
6. menghitung perubahan matriks partisi
\mu_{ij} = \frac{\sum_{i=1}^{n} (x_{ij} - v_{kj})^2 \frac{1}{p^{m-1}}}{\sum_{k=1}^{n} \sum_{j=1}^{n} (x_{ij} - v_{kj})^2 \frac{1}{p^{m-1}}}}
dengan: i=1,2,...cl jumlah item data) ; j=1,2,...dimensi dan k=1,2,...cl uster.

7. memeriksa kondisi berhenti:
a. Jika: (|Pt - Pt-1|< \xi) atau (t > MaxIter) maka berhenti
b. Jika tidak: t=t+1, mengulang langkah ke-4.
```

Gambar 1. Algoritma Fuzzy C-Means

3.4 Eksperimen

Hasil perhitungan fuzzy c-means untuk data nasabah dapat disajikan pada tabel 1 sebagai berikut:

Tabel 2. Data nasabah dengan perhitungan *fuzzy C means*

No	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6
1	0.002526	0.920696	0.003191	0.052472	0.013193	0.007922
2	0.826907	0.022315	0.013763	0.034979	0.018818	0.083217
3	0.013573	0.058544	0.006792	0.807065	0.019401	0.094626
4	0.002185	0.029635	0.001658	0.9508	0.005621	0.010101
5	0.004619	0.079087	0.003692	0.879708	0.012764	0.02013
1388	0.005697	0.864857	0.007871	0.074699	0.030819	0.016056
1389	0.0059	0.861185	0.008206	0.076046	0.032109	0.016554
1390	0.005697	0.864859	0.007871	0.074698	0.030819	0.016056
1391	0.0059	0.861185	0.008206	0.076046	0.032109	0.016554
1392	0.0059	0.861186	0.008206	0.076045	0.032109	0.016554
1388	0.005697	0.864857	0.007871	0.074699	0.030819	0.016056

Untuk menghitung RFM score, lakukan pembobotan untuk variabel recency, frequency dan monetary dengan cara mengambil nilai quartil 1, quartil 2, quartil 3 dan quartil 4.

Tabel 3. Pembobotan Variabel

Freque	ncy	Recency		Monetary	
Q1	2	Q1	9	Q1	1433599
Q2	8	Q2	58	Q2	7720008
Q3	24	Q3	177	Q3	39659943

Lakukan pembobotan variabel rfm dengan rule sebagai berikut

Recency

IF Recency > 177 = 1

IF Recency > 58 dan Recency <= 177 = 2

IF Recency > 9 dan Recency <=58 = 3

IF Recency $\leq 9 = 4$

Frequency

IF Frequency < 2 = 1

IF Frequency >=2 dan Frequency <8=2

IF Frequency >=8 dan Frequency <24=3

IF Frequency \Rightarrow 24 = 4

Monetary

IF Monetary < 1433599 = 1

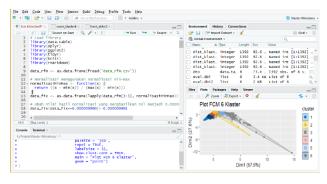
IF Monetary >= 1433599 dan Monetary <

7720008 = 2

IF Monetary >= 7720008 dan Monetary <

39659943 = 3

IF Monetary >= 39659943 = 4


Setelah rule di buat, akan dihitung menggunakan rumus

$$RFM\ score = (100*nilai\ recency) + (10*nilai\ frequency) + nilai\ monetary$$

Setelah dilakukan scoring mengikuti rule diatas akan didapatkan hasil sebagai berikut

Tabel 4. Scoring Rule RFM

No	Klaster	Score R	Score F	Score M	Total Score
1	2	3	2	3	323
2	1	1	1	3	113
3	4	2	1	1	211
4	4	2	2	3	223
5	2	2	2	3	223
1388	2	4	1	1	411
1389	2	4	1	1	411
1390	2	4	1	1	411
1391	2	4	1	1	411
1392	2	4	1	1	411

Gambar 2 Eksperimen dengan Tools RStudio 1.1.463 dengan versi bahasa R-4.0.3

3.5 Validasi Hasil dan evaluasi Untuk pengujian menggunakan Bavies Bouldin Index. Dengan mimiliki dasar dalam menghitung *similarity* antar klaster.

$$DB = \frac{1}{n_c} \sum_{i=1}^{n_c} R_i$$

$$R_i = \max_{j = 1..n_c, i \neq j} (R_{ij}), i = 1..n_c$$

$$R_{ij} = \frac{S_i + S_j}{d_{ij}}$$

 S_i = adalah rata-rata jarak objek seluruh klaster i dengan pusatnya.

 d_{ij} = adalah jarak pusat klaster i dan pusat klaster j

Tabel 5. Perbandingan hasil pengujian *Davies Bouldin Index*

Jumlah Klaster	Davies Bouldin	
	Index	
6	0.464	
7	0.466	

Cluster yang baik adalah dengan mempunyai nilai davies Boldin Index yang kecil [11], untuk mengoptimalkan klaster maka dicari dengan nilai davies Boldin Index paling kecil.

Tabel 6. *Summary* Hasil Segmentasi berdasarkan RFM

Cluster	Jumlah Nasabah	Mean	Avg R	Avg F	Avg M	RFM Score
c1	217	0.8313105	296.935484	4.345	6732443	111 - 144
c2	462	0.8299806	16.939394	16.939	75893024	311 - 344
c3	79	0.7643223	3.860759	164.063	1041830754	344 - 444
c4	271	0.7613943	87.088561	8.490	25737310	211 - 344
c5	124	0.7475178	9.854839	85.362	129386382	243 - 444
сб	239	0.8014585	181.698745	6.527	16678581	111 - 243

Evaluasi dari metode *fuzzy C means* dengan pengujian *davies bouldin index*, dapat dihasilkan 6 kelompok atau 6 *cluster* nasabah. Maka dari itu nasabah dikelompokkan seperti tabel berikut:

Tabel 7. jumlah nasabah dengan karakteristik berdasrakan *cluster*

Kelas nasabah	Cluster nasabah	Jumlah nasabah
Superstar	C3	79
Golden	C2	462
Typical Customoer	C5	124
Occantional customer	C4	271
Everyday shopper	C6	239
Dormant customer	C1	217

4. Kesimpulan

Dari penelitian ini dapat disimpulkan adalah sebagai berikut:

- 1. Pengelompokkan nasabah pada BMT XXX didapatkan 6 *cluster* yang paling optimal, dengan pengujian *davies bouldin index*.
- 2. Total nasabah yang aktif di tahun 2019 adalah 1.392 nasabah. Dari hasil perhitunag fuzzy C means, cluster Jumlah nasabah yang potensial 665 nasabah, dari kelas nasabah (superstar, golden, typical customer). Sedangkan jumlah nasabah yang kurang potensial 727 nasabah dari kelas (occational cutomer, everyday shopper, dormant cutomer).
- 3. Segementasi nasabah tersebut dapat digunakan oleh BMT XXX untuk melakukan strategi *marketing* untuk meningkatkan pelanggan agar selalu aktif dalam menabung.

5. Daftar Pustaka

- [1] V. Migueis, A. Comanho dan J. F. Cunha, "Customer data mining for life style segmentation," *Expert syst appl*, vol. 39, no. 10, pp. 9359-9366, 2012.
- [2] E. B. Ardiana, I. Soesanti dan A. E. Permanasari, "Analisis segmentasi pelanggan menggunakan kombinasi RFM model dan teknik clustering," *JUTEI*, vol. 2, no. 1, p. 23, 2018.
- [3] R. R. Putra dan C. Wadisman, "Implementasi data mining pemilihan pelanggan potensial menggunakan algoritma K-Means," *Journal of information technology and Computer Science*, vol. 1, no. 1, p. 72, 2018.
- [4] T. Hardiani, "Segmentasi Nasabah Simpanan Menggunakan Fuzzy C Means dan Fuzzy RFM pada BMT XYZ," *Nero*, vol. 3, no. 3, pp. 185-192, 2018.
- [5] P.on dan R.Banks, "International Journal of Management Research and Review Coustomer Realationship Management," the study of Customer, vol. 4, no. 1, pp. 27-39, 2014.
- [6] A. h. Lubis, "Model segementasi pelanggan dengan kernel K means clustering berbasis

- customer relationship management," *Sinkron*, vol. 1, no. 1, pp. 36-41, 2016.
- [7] I. Sumadikarta dan E. Abeiza, "Penerapan algoritma k means pada data mining untuk memilih produk dan pelanggan potensial," *satya informatika*, vol. 1, no. 1, pp. 12-22, 2014.
- [8] D. Astria dan Suprayogi, "Penerapan algoritam fuzzy c means untuk clustering pelanggan pada Cv. Mataram jaya bawen," *eksplora informatika*, vol. 6, no. 2, pp. 169-178, 2017.
- [9] N. R. Syarif dan Windarto, "Aplikasi data mining dengan menggunakan algoritma fuzzy C means dan Metode RFM untuk pengelompokkan pelanggan pada PT Eka Cipta rasa," *Skanika*, vol. 1, no. 3, pp. 1093-1099, 2018.
- [10] N. l. G. P. Suwirmayanti, "Penerapan Metode Fuzzy C means untuk pengelompokkan data kredit," *STMIK ponti*, pp. 390-395, 2018.
- [11] Qiao, Haiyan dan Brondon, "A data Clustering Tool with Cluster Validity Indices," *International Conference on Computing Engineering and Infromation IEEE*, 2009.