KLASIFIKASI DATA PELANGGAN POTENSIAL PUT IN SERVICE INDIHOME MENGGUNAKAN ALGORITMA NAÏVE BAYES

Muhammad Fauzan Al-Ghifary Dwi Wibowo, Reni Rahmadewi

Abstract


In the digital era like now, the invitation to get a job is very tight, companies are also increasingly demanding prospective employees to have work experience. This experience allows them to know and understand the atmosphere and apply the knowledge gained during college to the world of work. Knowing and learning how to classify customer data, an opportunity for students to gain experience. Data is an observation result in the form of characteristics of the representation that represents an object. While the understanding of information is the result of structured input processing [1]. Classification is an information mining functionality that wants to create a model to predict part of the objects in the information line [2]. Naïve Bayes algorithm is a grouping of data that is needed when predicting the possibility of a class. The customer classification of test data and training data required for grouping is 25 test data and 75 training data, where training information is then processed using the nave Bayes procedure [6]. After the grouping process using the nave Bayes procedure ended, after that the test information experiment amounted to 25 customer information [7]. Suggestions for further research, the method used needs to be redeveloped using other data mining methods, and it is better if the data used needs to be integrated with the database in order to avoid duplication or damage to data and data security is better maintained.


Keywords


Naïve Bayes, Data Mining, Data Latih, Database, Klasifikasi

Full Text:

References


Regulation of Transcription Elongation in Response to

Osmostress, https://www.yeastgenome.org/reference/S000207095

Kusnawi., (2007) Pengantar Solusi Data Mining

Ninki Hermaduanti., (2008) Bidang Kesehatan Sistem

Pendukung Keputusan Berbasis SMS untuk Menentukan Status Gizi dengan Metode K-Nearest Neighbor

Muhamad et al., (2013) Implementasi Algoritma Naïve

Bayes Berbasis Particle Swarm Optimization Untuk Memprediksi Penyakit Hepatitis

Harisnawan, E., (2016) Laporan Kegiatan Magang PT

Telekomunikasi Indonesia Witel Yogyakarta (Doctoral

dissertation, STIE YKPN)

Putro, H. F., Vulandari, R. T., & Saptomo, W. L. Y.

(2020). Penerapan Metode Naive Bayes Untuk Klasifikasi

Pelanggan. Jurnal TIKOMSIN (Teknologi Informasi dan

Komunikasi Sinar Nusantara), 8(2).

Manalu, E., Sianturi, F. A., & Manalu, M. R. (2017).

Penerapan Algoritma Naïve Bayes Untuk Memprediksi

Jumlah Produksi Barang Berdasarkan Data Persediaan Dan

Jumlah Pemesanan Pada Cv. Papadan Mama Pastries. Jurnal Mantik Penusa, 1(2).

Webb, G. I., Keogh, E., & Miikkulainen, R. (2010). Naïve

Bayes. Encyclopedia of machine learning, 15, 713-714.




DOI: https://doi.org/10.30591/polektro.v12i2.4127

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

----------------------------------------------------------------------------------------------------------------------

Indexed By :

slot88

 

 

 

 

 

----------------------------------------------------------------------------------------------------------------------

Tim Redaksi POWER ELEKTRONIK : JURNAL ORANG ELEKTRO

Program Studi D3 Teknik Elektro
Politeknik Harapan Bersama Tegal
Jl. Mataram No.09 Pesurungan Lor Kota Tegal

Telp. (0283) 350567

Email :
powerelektronik.ejournal@poltektegal.ac.id

elektropower41@gmail.com

 

Free counters!

View Visitor Statistic

 

Power Elektronik : Journal Orang Elektro licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

depo slot

casinolevant

slot terpercaya

Link Slot Gacor

katakwin

kenzototo

slot depo 5k

slot gacor