Validasi Kendaraan Pada Sistem Parkir Cerdas Berbasis Pengenalan Citra Menggunakan Raspberry Pi 3

Agit Amrullah, Uyock Anggoro Saputro

Abstract


Solusi parkir cerdas dalam mengatasi permasalahan lahan parkir telah dikembangan baik dari bentuk sistem informasi hingga terintegrasi. Pada ketersediaan zona parkir, beberapa solusi parkir cerdas, menggunakan bentuk implementasi sensor ultrasonik, infrared, dan pengenalan citra. Permasalahan yang terjadi pada kendaraan yang akan parkir pada zona parkir adalah validasi objek kendaraan parkir, sehingga akan sangat dimungkinkan objek bukan kendaraan dianggap sebagai kendaraan yang akan parkir. Pada penelitian ini akan dikembangkan mekanisme pendeteksian dan validasi dini pada kendaraan yang akan parkir pada suatu zona parkir cerdas berbasis pengenalan citra kendaraan menggunakan peralatan Microcontroller dengan tipe ESP32-Cam dan Raspberry Pi 3 sebagai server pada sistem parkir cerdas. Pada hasil pengujian yang didapatkan, kendaraan ataupun objek dapat terdeteksi dengan baik melalui akuisisi citra pada sisi belakang kendaraan yang akan terparkir dengan bentuk output validasi pada lokasi parkir menggunakan buzzer sebagai output hasil validasi dan pengarah jarak tepi zona parkir dengan kendaraan yang terdeteksi dan tervalidasi dengan tingkat akurasi sebesar 87% dan waktu validasi rata-rata 22 detik dengan menggunakan metode CNN pada framework YOLO v3.  

Full Text:

References


M. Tsani, A. Rupaka, L. Asmoro, and B. Pradana, “ANALISIS SENTIMEN REVIEW TRANSPORTASI MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE BERBASIS CHI SQUARE,” smartcomp, vol. 9, no. 1, pp. 35–39, Jan. 2020, doi: 10.30591/smartcomp.v9i1.1817.

H. Bura et al., “An Edge Based Smart Parking Solution Using Camera Networks and Deep Learning,” IEEE international conference on cognitive computing (ICCC), p. 8, Jul. 2018.

I. Jung, “An IoT-based smart parking management system,” Int. J. Computational Vision and Robotics, vol. 10, no. 2, p. 11, 2020.

V. A. Zhmud, N. O. Kondratiev, K. A. Kuznetsov, V. G. Trubin, and L. V. Dimitrov, “Application of ultrasonic sensor for measuring distances in robotics,” J. Phys.: Conf. Ser., vol. 1015, p. 032189, May 2018, doi: 10.1088/1742-6596/1015/3/032189.

N. Pazos et al., “Dynamic Street-Parking Optimisation,” in 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), Crans-Montana, Switzerland: IEEE, Mar. 2016, pp. 1020–1026. doi: 10.1109/AINA.2016.171.

M. Z. Abidin and R. Pulungan, “A Systematic Review of Machine-vision-based Smart Parking Systems,” Scientific Journal of Informatics, vol. 7, no. 2, p. 16, 2020.

V. Paidi, H. Fleyeh, J. Håkansson, and R. G. Nyberg, “Smart Parking Tools Suitability for Open Parking Lots: A Review:,” in Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems, Funchal, Madeira, Portugal: SCITEPRESS - Science and Technology Publications, 2018, pp. 600–609. doi: 10.5220/0006812006000609.

R. Lookmuang, K. Nambut, and S. Usanavasin, “Smart parking using IoT technology,” in 2018 5th International Conference on Business and Industrial Research (ICBIR), Bangkok: IEEE, May 2018, pp. 1–6. doi: 10.1109/ICBIR.2018.8391155.

A. A. Salsabillah, I. H. Santoso, and A. I. Irawan, “Implementation On Smart Parking Using ESP32Cam In Telkom University Premises,” vol. 8, no. 6, p. 3138, Dec. 2022.

M. O. Hasan, Md. M. Islam, and Y. Alsaawy, “Smart Parking Model based on Internet of Things (IoT) and TensorFlow,” in 2019 7th International Conference on Smart Computing & Communications (ICSCC), Sarawak, Malaysia, Malaysia: IEEE, Jun. 2019, pp. 1–5. doi: 10.1109/ICSCC.2019.8843651.

T. Nguyen et al., “An Adaptive Vision-based Outdoor Car Parking Lot Monitoring System,” in 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), Phu Quoc Island, Vietnam: IEEE, Jan. 2021, pp. 445–450. doi: 10.1109/ICCE48956.2021.9352090.

A. D. Limantara, Y. C. S. Purnomo, and S. W. Mudjanarko, “PEMODELAN SISTEM PELACAKAN LOT PARKIR KOSONG BERBASIS SENSOR ULTRASONIC DAN INTERNET OF THINGS (IOT) PADA LAHAN PARKIR DILUAR JALAN,” p. 10.

T. Lin, H. Rivano, and F. Le Mouel, “A Survey of Smart Parking Solutions,” IEEE Trans. Intell. Transport. Syst., vol. 18, no. 12, pp. 3229–3253, Dec. 2017, doi: 10.1109/TITS.2017.2685143.

K. Dokic, “Microcontrollers on the Edge – Is ESP32 with Camera Ready for Machine Learning?,” in Image and Signal Processing, A. El Moataz, D. Mammass, A. Mansouri, and F. Nouboud, Eds., in Lecture Notes in Computer Science, vol. 12119. Cham: Springer International Publishing, 2020, pp. 213–220. doi: 10.1007/978-3-030-51935-3_23.

Z. Balogh, M. Magdinv, and G. György, “Motion Detection and Face Recognition using Raspberry Pi, as a Part of, the Internet of Things,” APH, vol. 16, no. 3, May 2019, doi: 10.12700/APH.16.3.2019.3.9.

I. B. Mustaffa and S. F. B. M. Khairul, “Identification of fruit size and maturity through fruit images using OpenCV-Python and Rasberry Pi,” in 2017 International Conference on Robotics, Automation and Sciences (ICORAS), Melaka: IEEE, Nov. 2017, pp. 1–3. doi: 10.1109/ICORAS.2017.8308068.

L. Ouyang and H. Wang, “Vehicle target detection in complex scenes based on YOLOv3 algorithm,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 569, p. 052018, Aug. 2019, doi: 10.1088/1757-899X/569/5/052018.




DOI: https://doi.org/10.30591/smartcomp.v12i2.5096

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SMART COMP INDEXED OR REGISTERED BY

  
Flag Counter

View My Stats
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

 

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET