Algoritma Naive Bayes Untuk Memprediksi Bimbingan Konseling Siswa Sekolah Menengah Kejuruan

Robiatul Adawiyah, Muljono Muljono, Wildani Eko Nugroho

Abstract


Masalah bimbingan konseling merupakan masalah yang terdapat pada sekolah yang susah untuk di tebak. Prediksi yang akurat diperlukan bagi pengambil kebijakan untuk mengambil keputusan terkait pengolahan data siswa. Peramalan jangka pendek untuk panduan dan saran menggunakan Naïve Bayes sebagai model terapan. Untuk mengimplementasikan Naïve Bayes, kita perlu menentukan beberapa parameter. Oleh karena itu, diperlukan perhitungan untuk menerapkan metode peramalan dengan menggunakan teknik data mining. Oleh karena itu, untuk mengatasi masalah tersebut diperlukan suatu metode yang sesuai agar parameters yang diperoleh lebih optimal. Salah satu teknik data mining adalah Naïve Bayes yang menggunakan teknik klasifikasi, yang mampu menghasilkan nilai akurasi sebesar 90.46%.

Full Text:

References


A. Susanto, Bimbingan Dan Konseling. Konsep,Teori,Dan Aplikasinya. 2018.

Ramlah, “Pentingnya layanan bimbingan konseling bagi peserta didik,” Al-Mau’Izhah, vol. 1, no. September, pp. 70–76, 2018.

M. R. Fanani, “Algoritma Naïve Bayes Berbasis Forward Selection Untuk Prediksi Bimbingan Konseling Siswa,” J. DISPROTEK, vol. 11, no. 1, pp. 13–22, 2020, doi: 10.34001/jdpt.v11i1.952.

H. Kamaluddin, “Bimbingan dan Konseling Sekolah,” J. Pendidik. dan Kebud., vol. 17, no. 4, p. 447, 2011, doi: 10.24832/jpnk.v17i4.40.

R. A. Saputra and S. Ayuningtias, “Penerapan Algoritma Naive Bayes Untuk Penentuan Calon Penerima Beasiswa Pada Smk Pasim Plus Sukabumi,” Swabumi, vol. IV, no. 2, pp. 114–120, 2016.

L. Yang et al., “Prediction model of the response to neoadjuvant chemotherapy in breast cancers by a Naive Bayes algorithm,” Comput. Methods Programs Biomed., vol. 192, 2020, doi: 10.1016/j.cmpb.2020.105458.

E. Manalu, F. A. Sianturi, and M. R. Manalu, “Penerapan Algoritma Naive Bayes Untuk Memprediksi Jumlah Produksi Barang Berdasarkan Data Persediaan Dan Jumlah Pemesanan Pada CV. Papadan Mama Pastries,” J. Mantik Penusa, vol. 1, no. 2, pp. 16–21, 2017, [Online]. Available: https://ezp.lib.unimelb.edu.au/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=ffh&AN=2008-10-Aa4022&site=eds-live&scope=site.

H. Zhang, C. T. Liu, J. Mao, C. Shen, R. L. Xie, and B. Mu, “Development of novel in silico prediction model for drug-induced ototoxicity by using naïve Bayes classifier approach,” Toxicol. Vitr., vol. 65, no. February, 2020, doi: 10.1016/j.tiv.2020.104812.

S. Fallahpour, E. N. Lakvan, and M. H. Zadeh, “Using an ensemble classifier based on sequential floating forward selection for financial distress prediction problem,” J. Retail. Consum. Serv., vol. 34, no. March 2016, pp. 159–167, 2017, doi: 10.1016/j.jretconser.2016.10.002.

W. E. Nugroho, A. Sofyan, and O. Somantri, “Metode Naive Bayes Dalam Menentukan Program Studi Bagi Calon Mahasiswa Baru,” vol. 12, no. 01, pp. 59–64, 2021, doi: 10.35970/infotekmesin.v12i1.491.

T. Wong, “¨ ve Bayesian classifiers A hybrid discretization method for naı,” Pattern Recognit., vol. 45, no. 6, pp. 2321–2325, 2012, doi: 10.1016/j.patcog.2011.12.014.

J. Wu, S. Pan, Z. Cai, X. Zhu, and C. Zhang, “Dual instance and attribute weighting for Naive Bayes classification,” Proc. Int. Jt. Conf. Neural Networks, no. 1994, pp. 1675–1679, 2014, doi: 10.1109/IJCNN.2014.6889572.

M. J. Sánchez-Franco, A. Navarro-García, and F. J. Rondán-Cataluña, “A naive Bayes strategy for classifying customer satisfaction: A study based on online reviews of hospitality services,” J. Bus. Res., vol. 101, no. December, pp. 499–506, 2019, doi: 10.1016/j.jbusres.2018.12.051.

D. Mondal, D. K. Kole, and K. Roy, “Gradation of yellow mosaic virus disease of okra and bitter gourd based on entropy based binning and Naive Bayes classifier after identification of leaves,” Comput. Electron. Agric., vol. 142, no. October, pp. 485–493, 2017, doi: 10.1016/j.compag.2017.11.024.

A. H. Mirza, “Application of Naive Bayes Classifier Algorithm in Determining New Student Admission Promotion Strategies,” J. Inf. Syst. Informatics, vol. 1, no. 1, pp. 14–28, 2019, doi: 10.33557/journalisi.v1i1.2.

V. R. Balaji, S. T. Suganthi, R. Rajadevi, V. Krishna Kumar, B. Saravana Balaji, and S. Pandiyan, “Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes classifier,” Meas. J. Int. Meas. Confed., vol. 163, p. 107922, 2020, doi: 10.1016/j.measurement.2020.107922.




DOI: https://doi.org/10.30591/smartcomp.v12i3.5365

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SMART COMP INDEXED OR REGISTERED BY

  
Flag Counter

View My Stats
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

SUNDA787

 

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

POSKOBET

slot Online

slot777

postoto787 link alternatif

postoto787 login

Slot Gacor

Slot Maxwin

Slot88

SUNDA787

SITUS SUNDA787

SUNDA787 Login

SUNDA787 Daftar

SUNDA787

Slot Gacor

Slot Maxwin

SUNDA787 Daftar

SUNDA787 Login