Analisis Sentimen Fenomena PHK Massal Menggunakan Naive Bayes dan Support Vector Machine

Mohd Amiruddin Saddam, Erno Kurniawan D, Indra Indra


Termination of employment (PHK) on a large scale has a very significant impact on society and the economy. Mass layoffs have led to an increase in the number of unemployed people. Many people who have lost their jobs without a stable source of income struggle to find new jobs. This exacerbated the situation on the labor market and increased the number of unemployed people. Mass layoffs can also reduce economic activity and consumption. The sentiment analysis carried out aims to determine public sentiment regarding the phenomenon of mass layoffs that are currently happening in Indonesia based on positive and negative categories. In this study, the classification method used is the SVM method, which is one of the supervised learning methods in machine learning and also uses Nave Bayes as a comparison method. After classification, the next stage is the testing process using the K-fold cross-validation method. From the various sentiments obtained from Twitter data, it can be concluded that there are around 108 positive sentiments and 333 negative sentiments related to mass layoffs, while the results obtained from the test results using the SVM method show an accuracy of up to 84% while using the Nave Bayes method shows an accuracy of up to 74.1 percent


Klasifikasi, PHK Massal, Analisis Sentimen, SVM, Naive Bayes, Text Mining, Twitter

Full Text:


H. Setiawan, E. Utami, and S. Sudarmawan, ‘Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes’, Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 1, pp. 43–51, Jul. 2021, doi: 10.31603/komtika.v5i1.5189.

I. Romli, S. Prameswari R, and A. Z. Kamalia, ‘Sentiment Analysis about Large-Scale Social Restrictions in Social Media Twitter Using Algoritm K-Nearest Neighbor’, Jurnal Online Informatika, vol. 6, no. 1, p. 96, Jun. 2021, doi: 10.15575/join.v6i1.670.

H. Tuhuteru and A. Iriani, ‘Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier’, Jurnal Informatika: Jurnal Pengembangan IT, vol. 3, no. 3, pp. 394–401, Oct. 2018, doi: 10.30591/jpit.v3i3.977.

W. F. Satrya, R. Aprilliyani, and E. H. Yossy, ‘Sentiment analysis of Indonesian police chief using multi-level ensemble model’, in Procedia Computer Science, 2023, vol. 216, pp. 620–629. doi: 10.1016/j.procs.2022.12.177.

V. A. Fitri, R. Andreswari, and M. A. Hasibuan, ‘Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm’, in Procedia Computer Science, 2019, vol. 161, pp. 765–772. doi: 10.1016/j.procs.2019.11.181.

W. Budiawan Zulfikar, A. Rialdy Atmadja, and S. F. Pratama, ‘Sentiment Analysis on Social Media Against Public Policy Using Multinomial Naive Bayes’, Scientific Journal of Informatics, vol. 10, no. 1, 2023, doi: 10.15294/sji.v10i1.39952.

F. Fridom Mailo and L. Lazuardi, ‘Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang Masalah Obesitas di Indonesia’, Jurnal Sistem Informasi Kesehatan Masyarakat Journal of Information Systems for Public Health, vol. 4, no. 1, 2019.

R. Syahputra, G. J. Yanris, and D. Irmayani, ‘SVM and Naïve Bayes Algorithm Comparison for User Sentiment Analysis on Twitter’, Sinkron, vol. 7, no. 2, pp. 671–678, May 2022, doi: 10.33395/sinkron.v7i2.11430.

W. Gata and A. Bayhaqy, ‘Analysis sentiment about islamophobia when Christchurch attack on social media’, Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 4, pp. 1819–1827, 2020, doi: 10.12928/TELKOMNIKA.V18I4.14179.

M. A. Saddam, E. K. Dewantara, and A. Solichin, ‘Sentiment Analysis of Flood Disaster Management in Jakarta on Twitter Using Support Vector Machines’, Sinkron, vol. 8, no. 1, pp. 470–479, Jan. 2023, doi: 10.33395/sinkron.v8i1.12063.

D. Alita, S. Priyanta, and N. Rokhman, ‘Analysis of Emoticon and Sarcasm Effect on Sentiment Analysis of Indonesian Language on Twitter’, Journal of Information Systems Engineering and Business Intelligence, vol. 5, no. 2, p. 100, Oct. 2019, doi: 10.20473/jisebi.5.2.100-109.

Fatihah Rahmadayana and Yuliant Sibaroni, ‘Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization’, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 936–942, Oct. 2021, doi: 10.29207/resti.v5i5.3457.

M. Kartika Delimayanti, R. Sari, M. Laya, M. Reza Faisal, and dan Pahrul, ‘Pemanfaatan Metode Multiclass-SVM pada Model Klasifikasi Pesan Bencana Banjir di Twitter’, Edu Komputika, vol. 8, no. 1, 2021, [Online]. Available:

H. R. Alhakiem and E. B. Setiawan, ‘Aspect-Based Sentiment Analysis on Twitter Using Logistic Regression with FastText Feature Expansion’, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 5, pp. 840–846, Nov. 2022, doi: 10.29207/resti.v6i5.4429.

S. Kurniawan, W. Gata, D. Ayu Puspitawati, Nurmalasari, M. Tabrani, and K. Novel, ‘Perbandingan Metode Klasifikasi Analisis Sentimen Tokoh Politik Pada Komentar Media Berita Online’, Jurnal RESTI, vol. 3, no. 2, pp. 176–183, 2019.

E. Putri Nirwandani and R. Cahya Wihandika, ‘Analisis Sentimen Pada Ulasan Pengguna Aplikasi Mandiri Online Menggunakan Metode Modified Term Frequency Scheme Dan Naïve Bayes’, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputere, vol. 5, no. 3, pp. 1039–1047, 2021, [Online]. Available:

N. N. Alabid and Z. D. Katheeth, ‘Sentiment analysis of twitter posts related to the covid-19 vaccines’, Indonesian Journal of Electrical Engineering and Computer Science, vol. 24, no. 3, pp. 1727–1734, Dec. 2021, doi: 10.11591/ijeecs.v24.i3.pp1727-1734.

H. Sulastomo, K. Gibran, E. Maryansyah, and A. Tegar, ‘Analisis Sentimen Pada Twitter @Ovo_Id dengan Metode Support Vectore Machine (SVM)’, Jurnal Sains Komputer & Informatika (J-SAKTI, vol. 6, no. 2, pp. 1050–1056, 2022.

H. N. Irmanda and R. Astriratma, ‘Klasifikasi Jenis Pantun dengan Metode Support Vector Machines (SVM)’, Jurnal RESTI, vol. 4, no. 5, pp. 915–922, 2020.

I. Esa Tiffani, ‘Optimization of Naïve Bayes Classifier By Implemented Unigram, Bigram, Trigram for Sentiment Analysis of Hotel Review’, Journal of Soft Computing, vol. 1, no. 1, pp. 1–7, 2020.

S. Ilahiyah and A. Nilogiri, ‘Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network’, JUSTINDO (Jurnal Sistem & Teknologi Informasi Indonesia), vol. 3, no. 2, pp. 49–56, 2018.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Terindeks oleh :