Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Jenis Tanah Berbasis Android

Yani Parti Astuti, Egia Rosi Subhiyakto, Indah Wardatunizza, Etika Kartikadarma


Bawen District is one of the sub-districts in Semarang Regency, Central Java. This region has an area of land used for agriculture around 63.29%. In this area the population still uses soil as a planting medium. Soil is one of the planting media which plays an important role for the survival of plants. With so many types of soil that have different properties and characteristics, the treatment of these soils is also different. So it is necessary to have a soil classification to know how to manage the soil properly. To facilitate the classification of soil types, Deep Learning technology can be utilized with images as input which are then processed using the Convolutional Neural Network (CNN) algorithm. In order to get a model that has a high level of accuracy, an experiment was carried out on several influential parameters and an evaluation of the model was carried out using a confusion matrix. The confusion matrix has several values such as accuracy, precision, recall, and f1-score. Tests have been carried out and the results of this study are models that have a training accuracy of 97% with a loss value of 0.0880 and a testing accuracy of 95% with a loss value of 0.1513.


Tanah, Klasifikasi, Android, Deep Learning, Convolutional Neural Network.

Full Text:


Genesiska, Mulyono, dan A. Intan Yufantari, “Pengaruh Jenis Tanah Terhadap Pertumbuhan dan Hasil Tanaman Jagung (Zea mays L.) Varietas Pulut Sulawesi Effect of Soil Type on the Growth and Yield of Maize (Zea mays L.) Var. Pulut Sulawesi,” J. Agric. Sci., vol. 2020, no. 2, hal. 107–117, 2020.

I. Erliana, Abubakar, dan Zainabun, “Klasifikasi Tanah Kebun Kopi Arabika di Kabupaten Gayo Lues Berdasarkan Sistem Klasifikasi Soil Taxonomy USDA (Soil Classification of Arabica Coffee Farms on Gayo Lues Based on the USDA Soil Taxonomy Calssifikasi System),” J. Ilm. Mhs. Pertan., vol. 7, no. 1, hal. 696–703, 2022, [Daring]. Tersedia pada:

R. Rudi dan D. Avianto, “Implementasi Ekstraksi Ciri Histogram dan K-Nearest Neighbor untuk Klasifikasi Jenis Tanah di Kota Banjar, Jawa Barat,” J. Buana Inform., vol. 10, no. 2, hal. 85, 2019, doi: 10.24002/jbi.v10i2.2141.

D. S. Jodas, L. A. Passos, A. Adeel, dan J. P. Papa, “PL-kNN: A Python-based implementation of a parameterless k-Nearest Neighbors classifier [Formula presented],” Softw. Impacts, vol. 15, no. December 2022, hal. 100459, 2023, doi: 10.1016/j.simpa.2022.100459.

L. M. Riza Rizky dan S. Suyanto, “Adversarial training and deep k-nearest neighbors improves adversarial defense of glaucoma severity detection,” Heliyon, vol. 8, no. 12, hal. e12275, 2022, doi: 10.1016/j.heliyon.2022.e12275.

Z. Xu, J. Cao, G. Zhang, X. Chen, dan Y. Wu, “Active learning accelerated Monte-Carlo simulation based on the modified K-nearest neighbors algorithm and its application to reliability estimations,” Def. Technol., no. xxxx, 2022, doi: 10.1016/j.dt.2022.09.012.

M. Cubillos, S. Wøhlk, dan J. N. Wulff, “A bi-objective k-nearest-neighbors-based imputation method for multilevel data,” Expert Syst. Appl., vol. 204, no. April, 2022, doi: 10.1016/j.eswa.2022.117298.

J. A. Romero-del-Castillo, M. Mendoza-Hurtado, D. Ortiz-Boyer, dan N. García-Pedrajas, “Local-based k values for multi-label k-nearest neighbors rule,” Eng. Appl. Artif. Intell., vol. 116, no. October, hal. 105487, 2022, doi: 10.1016/j.engappai.2022.105487.

R. Akter dan M. I. Hosen, “CNN-based Leaf Image Classification for Bangladeshi Medicinal Plant Recognition,” ETCCE 2020 - Int. Conf. Emerg. Technol. Comput. Commun. Electron., 2020, doi: 10.1109/ETCCE51779.2020.9350900.

L. Pérez-Sala, M. Curado, L. Tortosa, dan J. F. Vicent, “Deep learning model of convolutional neural networks powered by a genetic algorithm for prevention of traffic accidents severity,” Chaos, Solitons and Fractals, vol. 169, no. October 2022, hal. 113245, 2023, doi: 10.1016/j.chaos.2023.113245.

T. Rahman dan M. S. Islam, “MRI brain tumor detection and classification using parallel deep convolutional neural networks,” Meas. Sensors, vol. 26, no. October 2022, hal. 100694, 2023, doi: 10.1016/j.measen.2023.100694.

M. Ishida, N. Kaneko, dan K. Sumi, “MOJI: Character-level convolutional neural networks for Malicious Obfuscated JavaScript Inspection,” Appl. Soft Comput., vol. 137, hal. 110138, 2023, doi: 10.1016/j.asoc.2023.110138.

A. S. Annuar, R. A. Rahman, A. Munir, A. Murad, H. A. El-enshasy, dan R. Illias, “Jo ur l P re,” Carbohydr. Polym., hal. 118159, 2021, doi: 10.1016/

A. Osborne, J. Dorville, dan P. Romano, “Energy and AI Upsampling Monte Carlo neutron transport simulation tallies using a convolutional neural network ✰,” Energy AI, vol. 13, no. March, hal. 100247, 2023, doi: 10.1016/j.egyai.2023.100247.

H. K. Sharma dan S. Kumar, “Soil Classification Characterization Using Image Processing,” Proc. 2nd Int. Conf. Comput. Methodol. Commun. ICCMC 2018, no. Iccmc, hal. 885–890, 2018, doi: 10.1109/ICCMC.2018.8488103.

A. Hu, H. Liao, W. Guan, J. Dong, dan X. Qian, “Support vector machine model based on OTSU segmentation algorithm in diagnosing bronchiectasis with chronic airway infections,” J. Radiat. Res. Appl. Sci., vol. 16, no. 1, hal. 100500, 2023, doi: 10.1016/j.jrras.2022.100500.

M. P. Behera, A. Sarangi, dan D. Mishra, “ScienceDirect ScienceDirect A Hybrid Machine Learning algorithm for Heart and Liver Disease A Hybrid Machine for Heart and Liver Disease Prediction Using Learning Modified algorithm Particle Swarm Optimization with Prediction Using Modified Particle Swarm Optimization with Support Vector Machine Support Vector Machine,” Procedia Comput. Sci., vol. 218, no. 2022, hal. 818–827, 2023, doi: 10.1016/j.procs.2023.01.062.

D. K. Jana, P. Bhunia, S. Das Adhikary, dan A. Mishra, “Analyzing of salient features and classification of wine type based on quality through various neural network and support vector machine classifiers,” Results Control Optim., vol. 11, no. February, hal. 100219, 2023, doi: 10.1016/j.rico.2023.100219.

Y. N. Paseneke dan A. Nugroho, “Pemetaan dan Klasifikasi Kesesuaian Jenis Tanah Terhadap Tanaman Menggunakan Metode Naïve Bayes di Desa Cukilan,” Aiti, vol. 19, no. 2, hal. 199–212, 2022, doi: 10.24246/aiti.v19i2.199-212.

Y. Liu, H. Pu, dan D. W. Sun, “Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices,” Trends Food Sci. Technol., vol. 113, no. April, hal. 193–204, 2021, doi: 10.1016/j.tifs.2021.04.042.

E. Y. Puspaningrum, B. Nugroho, dan H. A. Manggala, “Penerapan Radial Basis Function Untuk Klasifikasi Jenis Tanah,” SCAN - J. Teknol. Inf. dan Komun., vol. 15, no. 1, hal. 46–49, 2020, doi: 10.33005/scan.v15i1.1852.

Y. Yohannes, S. Devella, dan A. H. Pandrean, “Penerapan Speeded-Up Robust Feature pada Random Forest Untuk Klasifikasi Motif Songket Palembang,” J. Tek. Inform. dan Sist. Inf., vol. 5, no. 3, hal. 360–369, 2020, doi: 10.28932/jutisi.v5i3.1978.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Terindeks oleh :