Implementasi Aplikasi Sentimen Pada Data Twitter Jelang Pemilu 2024

Choirul Humam, Arif Dwi Laksito

Abstract


Elections are one of the most important democratic processes, giving citizens the right to choose their leaders. In today's digital era, social media is an increasingly important information source influencing public perception. Twitter has been a social media from the past until now that still exists in finding information. Tweets are one of the most frequently used services to express opinions or opinions to the public. Sentiment analysis as an application of Natural Language Processing (NLP) is helpful in understanding public opinion towards prospective leaders and issues discussed during election campaigns. The motivation for this study is to conduct text classification using a deep learning model called LSTM and to compare the use of oversampling and non-oversampling methods. This research started by collecting datasets from Twitter, labelling, pre-processing, creating and evaluating the model, and implementing it into the web application. The experiment showed that the random oversampling technique gets more significant accuracy than non-oversampling. Random oversampling produces an accuracy of 0.82 at epoch 25, while non-oversampling reaches an accuracy of 0.61 at epoch 50

Keywords


Pemilu, Twitter, LSTM, Analisis Sentimen, Oversampling

Full Text:

References


W. H. Silitonga and J. I. Sihotang, “Analisis Sentimen Pemilihan Presiden Indonesia Tahun 2019 Di Twitter Berdasarkan Geolocation Menggunakan Metode Naïve Bayesian Classification,” TeIKa, vol. 9, no. 02, pp. 115–127, 2019, doi: 10.36342/teika.v9i02.2199.

D. A. Kristiyanti, Normah, and A. H. Umam, “Prediction of Indonesia presidential election results for the 2019-2024 period using twitter sentiment analysis,” Proc. 2019 5th Int. Conf. New Media Stud. CONMEDIA 2019, pp. 36–42, 2019, doi: 10.1109/CONMEDIA46929.2019.8981823.

D. W. Seno and A. Wibowo, “Analisis Sentimen Data Twitter Tentang Pasangan Capres-Cawapres Pemilu 2019 Dengan Metode Lexicon Based Dan Support Vector Machine,” J. Ilm. FIFO, vol. 11, no. 2, p. 144, 2019, doi: 10.22441/fifo.2019.v11i2.004.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.

K. Muludi, M. S. Akbar, D. A. Shofiana, and A. Syarif, “Sentiment Analysis Of Energy Independence Tweets Using Simple Recurrent Neural Network,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 4, p. 339, 2021, doi: 10.22146/ijccs.66016.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.

I. Kurniawan and A. Susanto, “Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019,” Eksplora Inform., vol. 9, no. 1, pp. 1–10, 2019, doi: 10.30864/eksplora.v9i1.237.

N. Selle, N. Yudistira, and C. Dewi, “Perbandingan Prediksi Penggunaan Listrik dengan Menggunakan Metode Long Short Term Memory (LSTM) dan Recurrent Neural Network (RNN),” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 1, p. 155, 2022, doi: 10.25126/jtiik.2022915585.

Y. D. Prabowo, H. L. H. S. Warnars, W. Budiharto, A. I. Kistijantoro, Y. Heryadi, and Lukas, “Lstm and Simple Rnn Comparison in the Problem of Sequence to Sequence on Conversation Data Using Bahasa Indonesia,” 1st 2018 Indones. Assoc. Pattern Recognit. Int. Conf. Ina. 2018 - Proc., pp. 51–56, 2019, doi: 10.1109/INAPR.2018.8627029.

M. A. Nurrohmat and A. SN, “Sentiment Analysis of Novel Review Using Long Short-Term Memory Method,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 3, p. 209, 2019, doi: 10.22146/ijccs.41236.

A. Rahman et al., “Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 8, no. 2, pp. 299–303, 2022, [Online]. Available: https://jurnal.untan.ac.id/index.php/jepin/article/view/54704

M. Z. Rahman, Y. A. Sari, and N. Yudistira, “Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 11, pp. 5120–5127, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

G. A. BUNTORO, R. ARIFIN, G. N. SYAIFUDDIIN, A. SELAMAT, O. KREJCAR, and H. FUJITA, “Implementation of a Machine Learning Algorithm for Sentiment Analysis of Indonesia‘s 2019 Presidential Election,” IIUM Eng. J., vol. 22, no. 1, pp. 78–92, 2021, doi: 10.31436/IIUMEJ.V22I1.1532.

S. Juanita, “Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes,” J. Media Inform. Budidarma, vol. 4, no. 3, p. 552, 2020, doi: 10.30865/mib.v4i3.2140.

C. Prianto, N. H. Harani, and I. Firmansyah, “Analisis Sentimen Terhadap Kandidat Presiden Republik Indonesia Pada Pemilu 2019 di Media Sosial Twitter,” J. Media Inform. Budidarma, vol. 3, no. 4, p. 405, 2019, doi: 10.30865/mib.v3i4.1549.

S. F. Pratama, R. Andrean, and A. Nugroho, “Analisis Sentimen Twitter Debat Calon Presiden Indonesia Menggunakan Metode Fined-Grained Sentiment Analysis,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 4, no. 2, p. 39, 2019, doi: 10.31328/jointecs.v4i2.1004.

D. A. Firdlous and R. Andrian, “Analisis Sentimen Publik Twitter terhadap Pemilu 2024 menggunakan Model Long Short Term Memory Sentiment Analysis Public Twitter on 2024 Election using the Long Short Term Memory Model,” Sist. J. Sist. Inf., vol. 12, pp. 52–60, 2024.

U. R. Alfarizi, A. A. Rachman, X. Lawrencia, I. R. Borang, A. A. Pravitasari, and F. Indrayatna, “PEMODELAN TIME SERIES UNTUK MEMPREDIKSI TREN PEMILU 2024 DENGAN MENGGUNAKAN ALGORITMA LSTM,” J. BIAStatistics, no. 2022, pp. 217–221, 2023.

R. W. Hardian, P. E. Prasetyo, U. Khaira, and T. Suratno, “Analisis Sentiment Kuliah Daring Di Media Sosial Twitter Selama Pandemi Covid-19 Menggunakan Algoritma Sentistrength,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 2, pp. 138–143, 2021, doi: 10.57152/malcom.v1i2.15.

S. Choirunnisa and J. Lianto, “Hybrid method of undersampling and oversampling for handling imbalanced data,” 2018 Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2018, pp. 276–280, 2018, doi: 10.1109/ISRITI.2018.8864335.

M. R. Fais Sya’ bani, U. Enri, and T. N. Padilah, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 Dengan Algoritme Naïve Bayes,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, p. 265, 2022, doi: 10.30865/jurikom.v9i2.3989.

D. R. Alghifari, M. Edi, and L. Firmansyah, “Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia,” J. Manaj. Inform., vol. 12, no. 2, pp. 89–99, 2022, doi: 10.34010/jamika.v12i2.7764.

Muhammad David Hilmawan, “Deteksi Sarkasme Pada Judul Berita Berbahasa Inggris Menggunakan Algoritme Bidirectional LSTM,” J. dinda, vol. 1, no. 2, pp. 82–87, 2021.

F. Shahid, A. Zameer, and M. Muneeb, “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM,” Chaos, Solitons and Fractals, vol. 140, p. 110212, 2020, doi: 10.1016/j.chaos.2020.110212.

K. S. Nugroho, I. Akbar, A. N. Suksmawati, and I. Istiadi, “Deteksi Depresi dan Kecemasan Pengguna Twitter,” 4th Conf. Innov. Appl. Sci. Technol. (CIASTECH 2021), no. Ciastech, pp. 287–296, 2021.

X. H. Le, H. V. Ho, G. Lee, and S. Jung, “Application of Long Short-Term Memory (LSTM) neural network for flood forecasting,” Water (Switzerland), vol. 11, no. 7, 2019, doi: 10.3390/w11071387.

I. Markoulidakis, G. Kopsiaftis, I. Rallis, and I. Georgoulas, “Multi-Class Confusion Matrix Reduction method and its application on Net Promoter Score classification problem,” no. Cx, pp. 412–419, 2021.




DOI: https://doi.org/10.30591/jpit.v8i2.5051

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.