Hybrid Fourier Descriptor Naïve Bayes dan CNN pada Klasifikasi Daun Herbal

Sunarti Passura Backar, Purnawansyah Purnawansyah, Herdianti Darwis, Wistiani Astuti

Abstract


Plants are vital to human life on earth, and the leaves and their whole parts have many benefits. These parts of the plant can help distinguish between different species. The leaf identification can be performed at any time, while the other parts of the plants can only be identified at a certain time. The study aims to classify two types of herbs i.e. saur-opus androgynous and moringa oleifera, implementing the Fourier Descriptor method to extract the shape and texture features. In the process of classification using the Naïve Bayes method with three types of nuclei (Gaussian, Bernoulli, and Multinomial) and a Convolutional Neural Network. The testing process was carried out using two scenarios, dark and light, where each scenario consisted of 240 images for a total of 480 images divided into 20% of the data testing and 80% of the training data. The Fourier Descriptor-Bernoulli Naive Bayes method gives the lowest accuracy in both light and dark scenarios, at 46% and 52%, respectively. As for the classification of herbal leaves using a combination of the Fourier Descriptor-Convolutional Neural Network method, it is recommended to be used in light image scenarios and Fourier Descriptor-Gaussian Naive Bayes in the dark scenarios because it is able to detect herbal leaf types with 100% accuracy.

Keywords


Klasifikasi Daun Herbal; Fourier Descriptor; Naïve Bayes; Convolutional Neural Network

Full Text:

References


A. Ash, B. Ellis, L. J. Hickey, K. Johnson, P. Wilf, and S. Wing, Manual of Leaf Architecture, Morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms, vol. 34, no. 4. 1999. doi: 10.13140/2.1.3674.5282.

G. Cerutti et al., “Guiding Active Contours for Tree Leaf Segmentation and Identification To cite this version : Segmentation and Identification,” 2013.

J. Wäldchen and P. Mäder, Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review, vol. 25, no. 2. Springer Netherlands, 2018. doi: 10.1007/s11831-016-9206-z.

F. Liantoni, “Klasifikasi Daun Dengan Perbaikan Fitur Citra Menggunakan Metode K-Nearest Neighbor,” J. Ultim., vol. 7, no. 2, pp. 98–104, 2016, doi: 10.31937/ti.v7i2.356.

Z. Husin et al., “Embedded portable device for herb leaves recognition using image processing techniques and neural network algorithm,” Comput. Electron. Agric., vol. 89, pp. 18–29, Nov. 2012, doi: 10.1016/J.COMPAG.2012.07.009.

R. Rahmadewi, V. Efelina, and E. Purwanti, “IDENTIFIKASI JENIS TUMBUHAN MENGGUNAKAN CITRA DAUN BERBASIS JARINGAN SARAF TIRUAN ( ARTIFICIAL NEURAL NETWORKS ),” vol. VII, no. 2, pp. 38–43.

W. O. W. Sofyani, “Sistem Klasifikasi Kelor dalam Etnobotani Masyarakat Wolio,” JSW (Jurnal Sosiol. Walisongo), vol. 3, no. 1, pp. 49–64, 2019, doi: 10.21580/jsw.2019.3.1.3488.

A. Kadir, “Leaf Identification Using Fourier Descriptors and Other Shape Features,” Gate to Comput. Vis. Pattern Recognit., vol. 1, no. 1, pp. 3–7, 2015, doi: 10.15579/gtcvpr.0101.003007.

H. Kenang Candra Alivian Pratama, W. Suharso, K. Kunci, B. Naïve Bayes, G. Naïve Bayes, and M. Naïve Bayes, “Pengklasifikasian Kanker Payudara Dan Kanker Paru-Paru Dengan Metode Gaussian Naïve Bayes, Multinomial Naïve Bayes, Dan Bernoulli Naïve Bayes Classification Of Breast Cancer And Lung Cancer Using The Gaussian Naïve Bayes Multinomial Nave Bayes And Bernoul,” J. Smart Teknol., vol. 3, no. 4, pp. 2774–1702, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST

K. Ayuningsih, Y. A. Sari, and P. P. Adikara, “Klasifikasi Citra Makanan Menggunakan HSV Color Moment dan Local Binary Pattern dengan Naïve Bayes Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 3, no. 4, pp. 3166–3173, 2019.

D. Irfansyah et al., “Arsitektur Convolutional Neural Network ( CNN ) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” vol. 6, no. 2, pp. 87–92, 2021.

T. Q. Bao, N. T. T. Kiet, T. Q. Dinh, and H. X. Hiep, “Plant species identification from leaf patterns using histogram of oriented gradients feature space and convolution neural networks,” J. Inf. Telecommun., vol. 4, no. 2, pp. 140–150, 2020, doi: 10.1080/24751839.2019.1666625.

H. Tuhuteru and A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” J. Inform. J. Pengemb. IT, vol. 3, no. 3, pp. 394–401, 2018, doi: 10.30591/jpit.v3i3.977.

S. E. Basri, D. Indra, H. Darwis, A. W. Mufila, L. B. Ilmawan, and B. Purwanto, “Recognition of Indonesian Sign Language Alphabets Using Fourier Descriptor Method,” 3rd 2021 East Indones. Conf. Comput. Inf. Technol. EIConCIT 2021, pp. 405–409, 2021, doi: 10.1109/EIConCIT50028.2021.9431883.

P. A. R. Devi, N. Suciati, and W. N. Khotimah, “Apakah kombinasi power lbp dan fourier descriptor dapat digunakan untuk klasifikasi citra kerang?,” Teknologi, vol. 6, no. 2, p. 68, 2016, doi: 10.26594/teknologi.v6i2.768.

R. E. Pawening, A. Z. Arifin, and A. Yuniarti, “Ekstraksi Fitur Berdasarkan Deskriptor Bentuk dan Titik Salien Untuk Klasifikasi Citra Ikan Tuna,” J. Buana Inform., vol. 7, no. 3, pp. 215–224, 2016, doi: 10.24002/jbi.v7i3.660.

D. Sartika and D. I. Sensuse, “Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian,” Jatisi, vol. 1, no. 2, pp. 151–161, 2017.

A. Aninditya, M. A. Hasibuan, and E. Sutoyo, “Text mining approach using TF-IDF and naive bayes for classification of exam questions based on cognitive level of bloom’s taxonomy,” Proc. - 2019 IEEE Int. Conf. Internet Things Intell. Syst. IoTaIS 2019, no. November 2019, pp. 112–117, 2019, doi: 10.1109/IoTaIS47347.2019.8980428.

A. Budiman, J. C. Young, and A. Suryadibrata, “Implementasi Algoritma Naïve Bayes untuk Klasifikasi Konten Twitter dengan Indikasi Depresi,” J. Inform. J. Pengemb. IT, vol. 6, no. 2, pp. 133–138, 2021, [Online]. Available: http://ejournal.poltektegal.ac.id/index.php/informatika/article/view/2419

J. C. Griffis, J. B. Allendorfer, and J. P. Szaflarski, “Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans,” J. Neurosci. Methods, vol. 257, pp. 97–108, 2016, doi: 10.1016/j.jneumeth.2015.09.019.

B. M. and C. P., “An Automated Technique using Gaussian Naïve Bayes Classifier to Classify Breast Cancer,” Int. J. Comput. Appl., vol. 148, no. 6, pp. 16–21, 2016, doi: 10.5120/ijca2016911146.

G. Singh, “Comparison between Multinomial and Bernoulli Naïve Bayes for Text Classification,” 2019 Int. Conf. Autom. Comput. Technol. Manag., pp. 593–596, 2019.

M. Sadikin, R. Rosnelly, and T. Surya Gunawan, “Perbandingan Tingkat Akurasi Klasifikasi Penerimaan Dosen Tetap Menggunakan Metode Naive Bayes Classifier dan C4.5,” J. Media Inform. Budidarma , vol. 4, pp. 1100–1109, 2020, doi: 10.30865/mib.v4i4.2434.

Z. Zhang, “Derivation of Backpropagation in Convolutional Neural Network (CNN),” Univ. Tennessee, Knoxville, TN, pp. 1–7, 2016.

M. Sholihin, “Identifikasi Kesegaran Ikan Berdasarkan Citra Insang dengan Metode Convolution Neural Network,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 3, pp. 1352–1360, 2021, doi: 10.35957/jatisi.v8i3.939.

S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach,” Procedia Comput. Sci., vol. 132, pp. 679–688, 2018, doi: 10.1016/j.procs.2018.05.069.

J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, “Using deep transfer learning for image-based plant disease identification,” Comput. Electron. Agric., vol. 173, p. 105393, Jun. 2020, doi: 10.1016/J.COMPAG.2020.105393.

L. Mookdarsanit, P. M.-S. S. S. and, and undefined 2019, “Thai Herb Identification with Medicinal Properties Using Convolutional Neural Network,” ssstj.sci.ssru.ac.th, Accessed: Jan. 17, 2023. [Online]. Available: http://www.ssstj.sci.ssru.ac.th/Content/journals/Volume6_No2/Vol6_No2_005.pdf

M. P. Véstias, “Convolutional Neural Network,” Encycl. Inf. Sci. Technol. Fifth Ed., vol. 8, no. 4, pp. 12–26, 2020, doi: 10.4018/978-1-7998-3479-3.ch002.

Haryono, Khairul Anam, and Azmi Saleh, “Autentikasi Daun Herbal Menggunakan Convolutional Neural Network dan Raspberry Pi,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 3, pp. 278–286, 2020, doi: 10.22146/.v9i3.302.

P. Purnawansyah, H. Haviluddin, H. Darwis, H. Azis, and Y. Salim, “Backpropagation Neural Network with Combination of Activation Functions for Inbound Traffic Prediction,” Knowl. Eng. Data Sci., vol. 4, no. 1, p. 14, 2021, doi: 10.17977/um018v4i12021p14-28.

C. Journal, I. W. Saputro, B. W. Sari, P. Studi, I. Komputer, and J. Informatika, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa,” vol. 6, no. 1, pp. 1–11, 2019.

A. Prabhat and V. Khullar, “Sentiment classification on big data using Naïve bayes and logistic regression,” 2017 Int. Conf. Comput. Commun. Informatics, ICCCI 2017, no. January 2017, 2017, doi: 10.1109/ICCCI.2017.8117734




DOI: https://doi.org/10.30591/jpit.v8i2.5186

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.