Pemanfaatan Algoritma K-Means untuk Membuktikan Implementasi Undang-Undang Pelanggaran Hukum Korupsi di Pengadilan Negeri Banjarmasin

Cinantya Paramita, Fauzi Adi Rafrastara, catur Supriyanto

Abstract


This research aims to demonstrate the implementation of the Anti-Corruption Law in the Banjarmasin District Court by utilizing the K-Means algorithm. Corruption, which persists in Indonesia over a prolonged period, has reached a critical level, making it crucial to enforce the law fairly and firmly. In this study, the panel of judges in the Banjarmasin District Court was analyzed using the K-Means Clustering method and silhouette coefficient to decide corruption cases that result in state losses. The research findings indicate that the optimal number of clusters is 3, with a value of 0.686. However, there is also a lowest value among the 4 clusters, which is 0.454. These clusters are then divided into three categories of enforcement, namely cases that have been executed (108 cases), cases that will be executed (26 cases), and cases that have not been executed (2 cases). All clusters have a silhouette score of 0.742, indicating successful enforcement. This research provides concrete evidence that the panel of judges in the Banjarmasin District Court has implemented the Anti-Corruption Law while considering state losses. By utilizing the K-Means algorithm, this study also contributes to a better understanding of enforcement practices in the court. It is expected that the results of this research will support efforts to enhance the implementation of the Anti-Corruption Law in Indonesia, particularly in the Banjarmasin District Court

Keywords


korupsi, data mining, k-means clustering, silhouette coefficient

Full Text:

References


H. M. Sitohang, “Analisis Hukum Terhadap Tindak Pidana Korupsi Dengan Penyalagunaan Jabatan Dalam Bentuk Penyuapan Aktif,” PATIK J. Huk., vol. 07, no. 2086–4434, pp. 75–88, 2018.

K. R. Indonesia, “Peraturan Mahkamah Agung No.1 Th 2020, Pedoman pasal 2 dan 3 UU Pemberantasan Tindak Pidana Korupsi.” .

W. Saputro, M. Reza Pahlevi, and A. Wibowo, “Analisis Algoritma K-Means Untuk Klasterisasi Tindak Pidana Korupsi Di Wilayah Hukum Indonesia,” JIKO (Jurnal Inform. dan Komputer), vol. 3, no. 3, pp. 137–142, 2020, doi: 10.33387/jiko.v3i3.1960.

M. A. R. Indonesia, “Sistem Informasi Penelusuran Perkara - Pengadilan Negeri Banjarmasin,” 2023. https://sipp.pn-banjarmasin.go.id/.

R. W. Sari, A. Wanto, and A. P. Windarto, “Implementasi Rapidminer Dengan Metode K-Means (Study Kasus: Imunisasi Campak Pada Balita Berdasarkan Provinsi),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 224–230, 2018, doi: 10.30865/komik.v2i1.930.

Y. Mayona, R. Buaton, and M. Simanjutak, “Data Mining Clustering Tingkat Kejahatan Dengan Metode Algoritma K-Means (Studi Kasus: Kejaksaan Negeri Binjai),” J. Inform. Kaputama, vol. 6, no. 3, pp. 2548–9739, 2022.

P. W. Cahyo and L. Sudarmana, “A Comparison of K-Means and Agglomerative Clustering for Users Segmentation based on Question Answerer Reputation in Brainly Platform,” Elinvo (Electronics, Informatics, Vocat. Educ., vol. 6, no. 2, pp. 166–173, 2021, [Online]. Available: https://journal.uny.ac.id/index.php/elinvo/article/view/44486.

S. Handoko, F. Fauziah, and E. T. E. Handayani, “Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clustering,” J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 1, pp. 76–88, 2020, doi: 10.35760/tr.2020.v25i1.2677.

Z. Mustakim and R. Kamal, “K-Means Clustering for Classifying the Quality Management of Secondary Education in Indonesia,” Cakrawala Pendidik., vol. 40, no. 3, pp. 725–737, 2021, doi: 10.21831/cp.v40i3.40150.

F. N. Musid, “Implementasi Algoritma K-Means Clustering Dalam Pengelompokkan Data Jumlah Kerusakan Rumah Berdasarkan Kondisi Di Jawa Barat,” vol. 1, no. 3, pp. 101–114, 2023.

D. O. Dacwanda and Y. Nataliani, “Implementasi k-Means Clustering untuk Analisis Nilai Akademik Siswa Berdasarkan Nilai Pengetahuan dan Keterampilan,” Aiti, vol. 18, no. 2, pp. 125–138, 2021, doi: 10.24246/aiti.v18i2.125-138.

R. T. Vulandari, W. L. Y. Saptomo, and D. W. Aditama, “Application of K-Means Clustering in Mapping of Central Java Crime Area,” Indones. J. Appl. Stat., vol. 3, no. 1, p. 38, 2020, doi: 10.13057/ijas.v3i1.40984.

B. M. Randles, I. V. Pasquetto, M. S. Golshan, and C. L. Borgman, “Using the Jupyter Notebook as a Tool for Open Science: An Empirical Study,” Proc. ACM/IEEE Jt. Conf. Digit. Libr., pp. 17–18, 2017, doi: 10.1109/JCDL.2017.7991618.

A. L. Ramdani and H. B. Firmansyah, “Clustering Application for UKT Determination Using Pillar K-Means Clustering Algorithm and Flask Web Framework,” Indones. J. Artif. Intell. Data Min., vol. 1, no. 2, p. 53, 2018, doi: 10.24014/ijaidm.v1i2.5126.

M. T. Islam and M. A. Yousuf, “Development of a Corruption Detection Algorithm using K-means Clustering,” 2018 Int. Conf. Adv. Electr. Electron. Eng. ICAEEE 2018, no. November 2018, 2019, doi: 10.1109/ICAEEE.2018.8642985.

C. Yuan and H. Yang, “Research on K-Value Selection Method of K-Means Clustering Algorithm,” J, vol. 2, no. 2, pp. 226–235, 2019, doi: 10.3390/j2020016.

G. Andrienko, N. Andrienko, I. Kopanakis, A.




DOI: https://doi.org/10.30591/jpit.v8i2.5216

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.