Deep Learning untuk Identifikasi Daun Tanaman Obat Menggunakan Transfer Learning MobileNetV2

Rio Juan Hendri Butar-Butar, Noveri Lysbetti Marpaung

Abstract


Medicinal plants are plants used as alternative medicines for healing or preventing various diseases due to their active substances. The utilization of medicinal plants in Indonesia has been widespread among the community since ancient times and is a heritage passed down from ancestors. Medicinal plants have leaf structures that are almost similar between one plant and another, which can lead to confusion for some people and require precision in identifying the leaves of medicinal plants. Incorrect identification can have negative consequences for the users. In recent years, deep learning has been used to identify objects because of its ability to interpret images. This study used a transfer learning method to identify medicinal plants. Transfer learning utilizes a pre-trained model to learn and perform new tasks, making it suitable for smaller datasets. The pre-trained model used in this study is MobileNetV2. MobileNetV2 has a lightweight architecture and high accuracy. Fine-tuning techniques were applied in this study to improve the model's performance. Several experiments were conducted with parameters such as epochs and fine-tuning layers to obtain the best results. The research yielded a training accuracy of 97%, validation accuracy of 96%, and testing accuracy of 93%.

Keywords


Tanaman Obat, Transfer Learning, Fine Tune, Deep Learning, MobileNetV2

Full Text:

References


I. Aripin, T. Hidayat, and N. Rustaman, “Pengembangan Program Perkuliahan Biologi Konservasi Berbasis Citizen Science Project,” Pedagog. Hayati, vol. 5, no. 1, pp. 1–9, 2021.

Isman, Andani Ahmad, and Abdul Latief, “Perbandingan Metode KNN Dan LBPH Pada Klasifikasi Daun Herbal,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 557–564, 2021, doi: 10.29207/resti.v5i3.3006.

A. Naufalza, “Manfaat Daun Sirih pada Pencegahan penyakit Jantung Koroner,” J. Hoslistic Tradis. Med., vol. 02, no. 02, pp. 595–599, 2021.

Y. Xin et al., “Machine Learning and Deep Learning Methods for Cybersecurity,” IEEE Access, vol. 6, no. c, pp. 35365–35381, 2018, doi: 10.1109/ACCESS.2018.2836950.

R. Patel and A. Chaware, “Transfer learning with fine-tuned MobileNetV2 for diabetic retinopathy,” 2020 Int. Conf. Emerg. Technol. INCET 2020, pp. 6–9, 2020, doi: 10.1109/INCET49848.2020.9154014.

Y. Gulzar, “Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique,” Sustain., vol. 15, no. 3, 2023, doi: 10.3390/su15031906.

W. Hastomo, “Convolution Neural Network Arsitektur Mobilenet-V2 Untuk Mendeteksi Tumor Otak,” Pros. SeNTIK, vol. 5, no. 1, pp. 17–21, 2021.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018, doi: 10.1109/CVPR.2018.00474.

Haryono, Khairul Anam, and Azmi Saleh, “Autentikasi Daun Herbal Menggunakan Convolutional Neural Network dan Raspberry Pi,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 3, pp. 278–286, 2020, doi: 10.22146/.v9i3.302.

R. Pujiati and N. Rochmawati, “Identifikasi Citra Daun Tanaman Herbal Menggunakan Metode Convolutional Neural Network (CNN),” J. Informatics Comput. Sci., vol. 3, no. 03, pp. 351–357, 2022, doi: 10.26740/jinacs.v3n03.p351-357.

I. Jamaliah, “Identifikasi Jenis Daun Tanaman Obat Hipertensi Berdasarkan Citra Rgb Menggunakan Jaringan Syaraf Tiruan,” Penelit. Ilmu Komput. Sist. Embed. dan Log., vol. 5, no. 1, pp. 1–11, 2017.

S. F. Alamsyah, “Implementasi Deep Learning Untuk Klasifikasi Tanaman Toga Berdasarkan Ciri Daun Berbasis Android,” Ubiquitous Comput. its Appl. J., vol. 2, pp. 113–122, 2019, doi: 10.51804/ucaiaj.v2i2.113-122.

T. Akiyama, Y. Kobayashi, Y. Sasaki, K. Sasaki, T. Kawaguchi, and J. Kishigami, “Mobile leaf identification system using CNN applied to plants in Hokkaido,” 2019 IEEE 8th Glob. Conf. Consum. Electron. GCCE 2019, pp. 324–325, 2019, doi: 10.1109/GCCE46687.2019.9015298.

R. Prabowo, Y. Heningtyas, machudor Yusman, M. Iqbal, and O. D. E. Wulansari, “Klasifikasi Image Tumbuhan Obat (Keji Beling) Menggunakan Artificial Neural Network,” J. Komputasi, vol. 9, no. 2541–0350, pp. 88–92, 2021, doi: 10.23960/komputasi.v9i2.2868.

J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 311–323, 2020, doi: 10.28932/jutisi.v6i2.2688.

A. E. Wijaya, W. Swastika, and O. H. Kelana, “Implementasi Transfer Learning Pada Convolutional Neural Network Untuk Diagnosis Covid-19 Dan Pneumonia Pada Citra X-Ray,” Sainsbertek J. Ilm. Sains Teknol., vol. 2, no. 1, pp. 10–15, 2021, doi: 10.33479/sb.v2i1.125.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

M. Tsiakmaki, G. Kostopoulos, S. Kotsiantis, and O. Ragos, “Transfer learning from deep neural networks for predicting student performance,” Appl. Sci., vol. 10, no. 6, 2020, doi: 10.3390/app10062145.

E. I. Haksoro and A. Setiawan, “Pengenalan Jamur Yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning Pada Convolutional Neural Network,” J. ELTIKOM, vol. 5, no. 2, pp. 81–91, 2021, doi: 10.31961/eltikom.v5i2.428.

S. F. Handono, F. T. Anggraeny, and B. Rahmat, “Implementasi Convolutional Neural Network (Cnn) Untuk Deteksi Retinopati Diabetik,” J. Inform. dan Sist. Inf., vol. 1, no. 2, pp. 669–678, 2020.

N. K. Chauhan and K. Singh, “A review on conventional machine learning vs deep learning,” 2018 Int. Conf. Comput. Power Commun. Technol. GUCON 2018, pp. 347–352, 2019, doi: 10.1109/GUCON.2018.8675097.

P. Kim, MATLAB deep learning : with machine learning, neural networks and artificial intelligence. New York: NY: Apress, 2017.

G. Thiodorus, A. Prasetia, L. A. Ardhani, and N. Yudistira, “Klasifikasi citra makanan/non makanan menggunakan metode Transfer Learning dengan model Residual Network,” Teknologi, vol. 11, no. 2, pp. 74–83, 2021, doi: 10.26594/teknologi.v11i2.2402.

M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in Deep Learning, vol. 57. 2019.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.

S. O. Oppong, F. Twum, J. Ben Hayfron-Acquah, and Y. M. Missah, “A Novel Computer Vision Model for Medicinal Plant Identification Using Log-Gabor Filters and Deep Learning Algorithms,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/1189509.




DOI: https://doi.org/10.30591/jpit.v8i2.5217

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.