Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data
Abstract
Keywords
References
S. Srivastava, A. V. Divekar, C. Anilkumar, I. Naik, V. Kulkarni, and V. Pattabiraman, “Comparative analysis of deep learning image detection algorithms,” J Big Data, 2021, https://doi.org/10.1186/s40537-021-00434-w.
Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, “Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo,” CESS (Journal of Computer Engineering, System and Science), vol. 6, no. 2, p. 192, 2021, doi: 10.24114/cess.v6i2.25840.
Sahla Muhammed Ali, “Comparative Analysis of YOLOv3, YOLOv4 and YOLOv5 for Sign Language Detection,” IJARIIE, vol. 7, no. 4, pp. 2393–2398, 2021.
Xuewei Wang, Jun Liu, and Guoxu Liu, “Disease Detection of Occlusion and Overlapping Tomato Leaves Based on Deep Learning,” Front. Plant Sci., vol. 12, 2021, doi:10.3389/fpls.2021.792244.
F. Arnia and K. Munadi, Pengantar Teknik Pengolahan Citra dan Visi Komputer. Yogyakarta: Ombak, 2018.
D. B. Lasfeto, Machine Learning Dalam Penelitian Bidang Pendidikan. 2021.
R. J. Gunawan, B. Irawan, “Pengenalan Ekspresi Wajah Berbasis Convolutional Neural Network Dengan Model Arsitektur VGG16,” eProceedings of Engineering, vol. 8, no. 5, 2021.
D. Kurniawan, Pengenalan Machine Learning dengan Python. Jakarta: PT Elex Media Komputindo, 2020.
GitHub, Inc., “Does validation data impact the model performance? #6023,” [2] GitHub, Inc. [Online]. Available: https://github.com/ultralytics/yolov5/discussions/6023. [Accessed: 01-Mar-2023].
C. S. Sriyano, E. B. Setiawan, “Pendeteksian Berita Hoax Menggunakan Naive Bayes Multinomial Pada Twitter Dengan Fitur Pembobotan Tf-idf,” e-Proceeding Eng. Vol.8, No.2, vol. 8, no. 2, pp. 3396–3405, 2021.
C. Geraldy, C. Lubis, “Pendeteksian Dan Pengenalan Jenis Mobil Menggunakan Algoritma You Only Look Once Dan Convolutional Neural Network,” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 8, no. 2, 2020.
Khairunnas, E. M. Yuniarno, A. Zaini, “Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot,” JURNAL TEKNIK ITS, vol. 10, no. 1, 2021.
V. Choudhari, M. Phadtare, S. Vartak, R. Pedram, “Comparison between YOLO and SSD MobileNet for Object Detection in a Surveillance Drone,” IJSREM, vol. 5, no. 10, 2021.
T. Delleji, Z. Chtourou, “An Improved YOLOv5 for Real-time Mini-UAV Detection in No Fly Zones,” pp. 174-181, 2022.
U. Nepal, H. Eslamiat, “Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs,” Sensors, vol. 22, no. 2, 2022.
M. N Bramasta, M. Anshar, I. Nurtanio, “Prototipe Sistem Pengenalan Pelat Kendaraan Otomatis Berbasis YOLO pada Mekanisme Pintu Masuk Departemen Elektro UNHAS,” Seminar Nasional Elektroteknik dan Teknologi Informasi, 2022.
A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” 2020.
B. B. Dursa and K. K. Tune, “Developing Traffic Congestion Detection Model Using Deep Learning Approach: A Case Study of Addis Ababa City Road,” 2020
DOI: https://doi.org/10.30591/jpit.v8i3.5679
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Terindeks oleh :