Analisis Sentimen Inses di Social Media menggunakan Algoritma Naïve Bayes

Tasya Salsabilla, Debby Alita

Abstract


Sexual violence, especially against women and children, is a serious problem in Indonesia. Cases are increasing every year, including incest, which involves sexual relations between close family members. Girls, who are often considered weak and vulnerable, are the main victims. The latest data from the National Commission on Violence Against Women records a decrease in incest cases from 1,210 in 2017 to 215 in 2020. However, attention is still needed, especially because biological fathers are the largest perpetrators. This research uses the Naïve Bayes algorithm for sentiment analysis. This algorithm is an effective classification method based on Bayes' theorem with simple assumptions but is quite effective. Assuming that each feature in the data is independent, Naïve Bayes can work well in text analysis. The research results showed an accuracy rate of 94%. Continued attention to sexual violence, especially incest, is needed to protect vulnerable girls. Protection efforts must continue to be improved, including the application of sentiment analysis methods such as Naïve Bayes for monitoring and early detection. Public awareness and cross-sector cooperation are also key in overcoming this phenomenon.

Keywords


Kekerasan Seksual, Inses, Algoritma Naïve Bayes, Analisis Sentimen.

Full Text:

References


M. F. Fahrezi and A. A. Permana, “Sentimen Analisis Opini Masyarakat Pada Sosial Media Twitter Terhadap Organisasi Aksi Cepat Tanggap Menggunakan Naïve Bayes Classifier,” JT : Jurnal Teknik, vol. 11, no. 02, pp. 113–121, 2022.

R. N. Fathin, “Pelayanan Uptd Pemberdayaan Perempuan Dan Perlindungan Anak Terhadap Kasus Kekerasan Seksual (Inses) Pada Anak Di …,” 2023.

I. Budi, P. Pengukuhan, G. Besar, B. I. Komputer, F. I. Komputer, and U. Indonesia, Analisis Media Sosial Sebagai Upaya Dini Deteksi Potensi Konflik Masyarakat di Dunia Maya Indra Budi. 2023.

“10. Deteksi Komentar Cyberbullying Pada Media Sosial Berbahasa Inggris Menggunakan Naïve B (1)”.

I. Sholekha, A. Faqih, and A. Bahtiar, “Sentiment Analysis of Public Opinion Covid-19 Vaccine Using Naïve Bayes and Random Forest Methods,” JURNAL TEKNIK INFORMATIKA, vol. 15, no. 1, pp. 34–43, Jun. 2022, doi: 10.15408/jti.v15i1.24847.

D. Alita, Y. Fernando, and H. Sulistiani, “IMPLEMENTASI ALGORITMA MULTICLASS SVM PADA OPINI PUBLIK BERBAHASA INDONESIA DI TWITTER,” Jurnal TEKNOKOMPAK, vol. 14, no. 2, p. 86, 2020.

E. P. Harahap, H. Dwi Purnomo, A. Iriani, I. Sembiring, and T. Nurtino, “Trends in sentiment of Twitter users towards Indonesian tourism: analysis with the k-nearest neighbor method,” Computer Science and Information Technologies, vol. 5, no. 1, pp. 13–22, 2024, doi: 10.11591/csit.v5i1.pp13-22.

R. Syaputra, R. Andryani, and D. Erlansyah, “Naïve Bayes Method for Text-Based Sentiment Analysis on Social Media,” 2023.

Z. Firmansyah and N. F. Puspitasari, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Berdasarkan Opini Pada Twitter MenggunakFirmansyah, Z., & Puspitasari, N. F. (2021). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Berdasarkan Opini Pada Twitter Menggunakan Algoritma Nai,” Jurnal Teknik Informatika, vol. 14, no. 2, pp. 171–178, 2021.

D. W. Ardras and A. Voutama, “Analisis Sentimen Anti Lgbt Di Indonesia Melalui Media Sosial Twitter,” Jurnal Teknika, vol. 15, no. 1, pp. 23–28, 2023, doi: 10.30736/jt.v15i1.926.

R. K. Septiani, S. Anggraeni, and S. D. Saraswati, “Klasifikasi Sentimen Terhadap Ibu Kota Nusantara (IKN) pada Media Sosial Menggunakan Naive Bayes,” Teknika, vol. 16, no. 2, pp. 245–254, 2022.

A. Perdana, A. Hermawan, and D. Avianto, “Analisis Sentimen Terhadap Isu Penundaan Pemilu di Twitter Menggunakan Naive Bayes Clasifier,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 11, no. 2, pp. 195–200, 2022, doi: 10.32736/sisfokom.v11i2.1412.

R. D. Septiana, A. B. Susanto, and T. Tukiyat, “Analisis Sentimen Vaksinasi Covid-19 Pada Twitter Menggunakan Naive Bayes Classifier Dengan Feature Selection Chi-Squared Statistic dan Particle Swarm Optimization,” Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), vol. 5, no. 1, pp. 49–56, 2021, doi: 10.47970/siskom-kb.v5i1.228.

M. Derryl Qinanda, A. Nilogiri, and T. Timur, “Jurnal Sistem dan Teknologi Informasi Sentimen Pada Komentar Youtube Tentang Pencegahan Dan Penanganan Kekerasan Seksual Pada Permendikbud Berbasis Naïve Bayes Dan Support Vector Machine,” vol. 7, no. 2, 2022.

J. Homepage, A. Harun, and D. P. Ananda, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Analysis of Public Opinion Sentiment About Covid-19 Vaccination in Indonesia Using Naïve Bayes and Decission Tree Analisa Sentimen Opini Publik Tentang Vaksinasi Covid-19 di Indonesia Menggunakan Naïve Bayes dan Decission Tree,” vol. 1, pp. 58–63, 2021.




DOI: https://doi.org/10.30591/jpit.v9i3.6611

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.