Analisis Sentimen Pembangunan IKN pada Media Sosial X Menggunakan Algoritma SVM, Logistic Regression dan Naïve Bayes

Nur Hadi, Dedy Sugiarto

Abstract


social media X or formerly more familiar with Twitter is one of the familiar social media and has many users in the world whis is a platform for accesing some information and commenting both suggestions and criticsm related to the development of the Capital City of the Archipelago (IKN) which is the center of smart government in East Kalimantan. There are indormation, suggestions and criticisms addressed to the @ikn_id account directly addressed to the Indonesia government as well as public opinions related to IKN by using the IKN hashtag. Public sentiment on the issue is in the form of text on IKN Development. This research aims to analyze public opinion on the government's decision to build the Capital City of Nusatara (IKN) conveyed through X social media using appropriate data analysis methods by comparing the performance of support vector machine, logistic regression, and naïve bayes algorithms and identifying the most effective algorithm in sentiment analysis. The method used in this research to analyze sentiment are support vector machine, logistic regression and naïve bayes. The use of these three algorithms is also to compare the accuracy that is better than other algorithms. The results obtained using the Support Vector Machine algorithm is 80% while using the Logistic Regression and naïve bayes algorithms are 79%.

Keywords


Ibu Kota Nusantara; Logistic regression; Naïve Bayes; Sentiment Analysis; Support Vector Machine; X

Full Text:

References


P. Arsi and R. Waluyo, “ANALISIS SENTIMEN WACANA PEMINDAHAN IBU KOTA INDONESIA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” vol. 8, no. 1, pp. 147–156, 2021, doi: 10.25126/jtiik.202183944.

A. Dyah Masitah, D. Suluh, and K. Dewi, “Analisis Opini Publik Berdasarkan Teori Agenda Setting Pada Proses Perencanaan Pemindahan IKN,” Jurnal Ilmu Sosial dan Pendidikan (JISIP), vol. 6, no. 3, pp. 2598–9944, 2022, doi: 10.36312/jisip.v6i3.3374/http.

G. Aji, Z. Arfani, A. M. Sari, R. Seprtiani, and U. K. H. Abdurrahman Wahid, “Dampak Pemindahan Ibukota Negara Baru terhadap Ekonomi dan Sosial di Provinsi Kalimantan Timur,” 2023. [Online]. Available: http://jurnal.kolibi.org/index.php/kultura

D. Ocsanda, C. Ilham Wijaya, M. Azzam Al Haq, J. Dwi Efendi, and F. Prihantoro, “OPORTUNITAS PEMBENTUKAN ENTITAS KEBUDAYAAN BARU, TINJAUAN TERHADAP IBU KOTA NEGARA (IKN) INDONESIA 2024 BERDASARKAN SEJARAH PERPINDAHAN IBU KOTA VOC 1619 OPPORTUNITY FOR NEW CULTURAL ENTITY EMERGENCE, AN OVERVIEW OF THE CAPITAL CITY (IKN) OF INDONESIA 2024 BASED ON THE HISTORY OF THE RELOCATION OF THE CAPITAL CITY OF VOC 1619,” vol. 18, pp. 1–12, 2023, doi: 10.47441/jkp.v18i1.291.

M. V. Santos, F. Morgado-Dias, and T. C. Silva, “Oil Sector and Sentiment Analysis—A Review,” Jun. 01, 2023, MDPI. doi: 10.3390/en16124824.

M. Amiruddin Saddam, E. D. Kurniawan, F. Teknologi Informasi, U. Budi Luhur, and J. Ciledug Raya, “Analisis Sentimen Fenomena PHK Massal Menggunakan Naive Bayes dan Support Vector Machine,” vol. 8, no. 3, 2023.

L. Nemes and A. Kiss, “Social media sentiment analysis based on COVID-19,” Journal of Information and Telecommunication, vol. 5, no. 1, pp. 1–15, 2021, doi: 10.1080/24751839.2020.1790793.

Z. Kastrati, F. Dalipi, A. S. Imran, K. P. Nuci, and M. A. Wani, “Sentiment analysis of students’ feedback with nlp and deep learning: A systematic mapping study,” 2021, MDPI AG. doi: 10.3390/app11093986.

K. Garcia and L. Berton, “Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA,” Appl Soft Comput, vol. 101, Mar. 2021, doi: 10.1016/j.asoc.2020.107057.

C. Humam and A. D. Laksito, “Implementasi Aplikasi Sentimen Pada Data Twitter Jelang Pemilu 2024,” vol. 8, no. 2, 2023.

A. N. Syafia, M. F. Hidayattullah, and W. Suteddy, “Studi Komparasi Algoritma SVM Dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS,” vol. 8, no. 3, 2023.

C. Humam and A. D. Laksito, “Implementasi Aplikasi Sentimen Pada Data Twitter Jelang Pemilu 2024,” vol. 8, no. 2, 2023.

C. Ayunda et al., “Analisis Komparasi Algoritma Machine Learning untuk Sentiment Analysis (Studi Kasus: Komentar YouTube ‘Kekerasan Seksual’),” vol. 7, no. 2, 2022.

R. B. Dahlian and D. Sitanggang, “Sentiment Analysis of Digital Television Migration on Twitter Using Naïve Bayes Multinomial Comparison, Support Vector Machines, and Logistic Regression Algorithms,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 12, no. 2, pp. 280–288, Jul. 2023, doi: 10.32736/sisfokom.v12i2.1668.

A. Rahman Isnain, N. Hendrastuty, and L. Andraini, “Comparison of Support Vector Machine and Naïve Bayes on Twitter Data Sentiment Analysis,” vol. 6, no. 1, 2021.

“SENTIMENT ANALYSIS USING SUPPORT VECTOR MACHINE BASED ON FEATURE SELECTION AND SEMANTIC ANALYSIS,” International Research Journal of Computer Science (IRJCS) Citation: Dr .Ar ivoli & Sonali, pp. 209–214, 2021, doi: 10.26562/ir.

S. A. H. Bahtiar, C. K. Dewa, and A. Luthfi, “Comparison of Naïve Bayes and Logistic Regression in Sentiment Analysis on Marketplace Reviews Using Rating-Based Labeling,” Journal of Information Systems and Informatics, vol. 5, no. 3, pp. 915–927, Aug. 2023, doi: 10.51519/journalisi.v5i3.539.

I. Habib Kusuma and N. Cahyono, “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor,” vol. 8, no. 3, 2023.

… | Sumertajaya, I. M. Angraini, Y. R. Harahap, and J. B. Fitrianto, “Sentiment Analysis on Covid-19 Vaccination in Indonesia Using Support Vector Machine and Random Forest.” [Online]. Available: https://apps.twitter.com/

H. Tuhuteru and A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 3, no. 3, pp. 394–401, Oct. 2018, doi: 10.30591/jpit.v3i3.977.

S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 153–160, Oct. 2023, doi: 10.57152/malcom.v3i2.897.

M. Bansal, A. Goyal, and A. Choudhary, “A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning,” Decision Analytics Journal, vol. 3, p. 100071, Jun. 2022, doi: 10.1016/j.dajour.2022.100071.

B. Gaye, D. Zhang, and A. Wulamu, “Improvement of Support Vector Machine Algorithm in Big Data Background,” Math Probl Eng, vol. 2021, 2021, doi: 10.1155/2021/5594899.

A. Maulana, Inayah Khasnaputri Afifah, Asghafi Mubarrak, Kiagus Rachmat Fauzan, Ardhan Dwintara, and B. P. Zen, “COMPARISON OF LOGISTIC REGRESSION, MULTINOMIALNB, SVM, AND K-NN METHODS ON SENTIMENT ANALYSIS OF GOJEK APP REVIEWS ON THE GOOGLE PLAY STORE,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1487–1494, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.863.

K. Nurbagja et al., “Sentiment Analysis of the Increase in Fuel Prices Using Random Forest Classifier Method,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 5, no. 1, pp. 132–144, 2023, doi: 10.12928/biste.v5i1.7414.

H. Kaur, S. Ul Ahsaan, B. Alankar, and V. Chang, “A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets”, doi: 10.1007/s10796-021-10135-7/Published.

A. A. Aldino, A. Saputra, A. Nurkholis, and S. Setiawansyah, “Application of Support Vector Machine (SVM) Algorithm in Classification of Low-Cape Communities in Lampung Timur,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 3, pp. 325–330, Dec. 2021, doi: 10.47065/bits.v3i3.1041.




DOI: https://doi.org/10.30591/jpit.v10i1.7106

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.