Analysis of Electronic Wallet User Sentiment on Twitter (x) Social Media Using the Naïve Bayes Classifier Algorithm
Abstract
Keywords
References
Z. A. Diekson, M. R. B. Prakoso, M. S. Q. Putra, M. S. A. F. Syaputra, S. Achmad, and R. Sutoyo, “Sentiment analysis for customer
review: Case study of Traveloka,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 682–690. doi: 10.1016/j.procs.2022.12.184.
Hertina et al., “Data mining applied about polygamy using sentiment analysis on twitters in indonesian perception,” Bulletin of Electrical
Engineering and Informatics, vol. 10, no. 4, pp. 2231–2236, Aug. 2021, doi: 10.11591/EEI.V10I4.2325.
F. A. 2 Pablo A Henríquez 1, “Analyzing digital societal interactions and sentiment classification in Twitter (X) during critical events in
Chile,” national library of medicine, 2024.
V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in
Indonesia using Naïve Bayes, decision tree, and random forest algorithm,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 765–
doi: 10.1016/j.procs.2019.11.181.
P. H. Prastyo, A. S. Sumi, A. W. Dian, and A. E. Permanasari, “Tweets Responding to the Indonesian Government’s Handling of COVID-
: Sentiment Analysis Using SVM with Normalized Poly Kernel,” Journal of Information Systems Engineering and Business
Intelligence, vol. 6, no. 2, p. 112, Oct. 2020, doi: 10.20473/jisebi.6.2.112-122.
M. A. Fauzi, “Random forest approach fo sentiment analysis in Indonesian language,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 12, no. 1, pp. 46–50, Oct. 2018, doi: 10.11591/ijeecs.v12.i1.pp46-50.
L. K. Ramasamy, S. Kadry, and S. Lim, “Selection of optimal hyper-parameter values of support vector machine for sentiment analysis
tasks using nature-inspired optimization methods,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 1, pp. 290–298, Feb.
, doi: 10.11591/eei.v10i1.2098.
M. Isnan, G. N. Elwirehardja, and B. Pardamean, “Sentiment Analysis for TikTok Review Using VADER Sentiment and SVM Model,”
in Procedia Computer Science, Elsevier B.V., 2023, pp. 168–175. doi: 10.1016/j.procs.2023.10.514.
Y. Mao, Q. Liu, and Y. Zhang, “Sentiment analysis methods, applications, and challenges: A systematic literature review,” Apr. 01, 2024,
King Saud bin Abdulaziz University. doi: 10.1016/j.jksuci.2024.102048.
Jurnal Informatika: Jurnal pengembangan IT
Vol. xx, No. x, Bulan 20xx
Azhar Basir: Analysis of Electronic Wallet….
N. I. Abas and D. Puspawati, “E-Wallet Adoption in Continuance Intention As A e-Payment System for Live Streaming Shopping,” in
Procedia Computer Science, Elsevier B.V., 2024, pp. 1137–1144. doi: 10.1016/j.procs.2024.03.109.
A. Daragmeh, J. Sági, and Z. Zéman, “Continuous intention to use e-wallet in the context of the covid-19 pandemic: Integrating the health
belief model (hbm) and technology continuous theory (tct),” Journal of Open Innovation: Technology, Market, and Complexity, vol. 7,
no. 2, Jun. 2021, doi: 10.3390/joitmc7020132.
D. Locatelli, G. Damo, and D. Nozza, “A Cross-Lingual Study of Homotransphobia on Twitter,” 2023. [Online]. Available:
https://www.ustranssurvey.org/reports
Y. Shang, “Prevention and detection of DDOS attack in virtual cloud computing environment using Naive Bayes algorithm of machine
learning,” Measurement: Sensors, vol. 31, Feb. 2024, doi: 10.1016/j.measen.2023.100991.
R. A. Sagum, P. A. C. Clacio, R. E. R. Cayetano, and A. D. F. Lobrio, “Philippine Court Case Summarizer using Latent Semantic
Analysis,” in Procedia Computer Science, Elsevier B.V., 2023, pp. 474–481. doi: 10.1016/j.procs.2023.10.548.
H. Cam, A. V. Cam, U. Demirel, and S. Ahmed, “Sentiment analysis of financial Twitter posts on Twitter with the machine learning
classifiers,” Heliyon, vol. 10, no. 1, Jan. 2024, doi: 10.1016/j.heliyon.2023.e23784.
M. Qorib, T. Oladunni, M. Denis, E. Ososanya, and P. Cotae, “Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine
learning on COVID-19 vaccination Twitter dataset,” Expert Syst Appl, vol. 212, Feb. 2023, doi: 10.1016/j.eswa.2022.118715.
M. Bilal, H. Israr, M. Shahid, and A. Khan, “Sentiment classification of Roman-Urdu opinions using Naïve Bayesian, Decision Tree and
KNN classification techniques,” Journal of King Saud University - Computer and Information Sciences, vol. 28, no. 3, pp. 330–344, Jul.
, doi: 10.1016/j.jksuci.2015.11.003.
B. M. Susanto, “Naïve Bayes Decision Tree Hybrid Approach for Intrusion Detection System,” Buletin Teknik Elektro dan Informatika
(Bulletin of Electrical Engineering and Informatics, vol. 2, no. 3, pp. 225–232, 2013.
A. A. S. E. D. M. H. N. A. P. and C. P. M. S. A. V. D. Sano, “Proposing a Visualized Comparative Review Analysis Model on Tourism
Domain Using Naïve Bayes Classifier,” pp. 482–489, 2023.
N. M. N. Mathivanan, N. A. Nor, and R. M. Janor, “Improving classification accuracy using clustering technique,” Bulletin of Electrical
Engineering and Informatics, vol. 7, no. 3, pp. 465–470, Sep. 2018, doi: 10.11591/eei.v7i3.1272.
B. Valarmathi, N. S. Gupta, V. Karthick, T. Chellatamilan, K. Santhi, and D. Chalicheemala, “Sentiment Analysis of Covid-19 Twitter
Data using Deep Learning Algorithm,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 3397–3407. doi:
1016/j.procs.2024.04.320.
H. Huang, A. A. Zavareh, and M. B. Mustafa, “Sentiment Analysis in E-Commerce Platforms: A Review of Current Techniques and
Future Directions,” 2023, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2023.3307308.
N. Pavitha et al., “Movie recommendation and sentiment analysis using machine learning,” Global Transitions Proceedings, vol. 3, no.
, pp. 279–284, Jun. 2022, doi: 10.1016/j.gltp.2022.03.012.
[24] J. Junifer Pangaribuan and O. Putra Barus, “Implementasi Algoritma Tf-Idf Dan Support Vector Machine Terhadap Analisis
Pendeteksi Komentar Cyberbullying Di Media Sosial Tiktok,” Jurnal Device, vol. 13, no. 1, pp. 124–134.
S. R. Anggraeni, N. A. Ranggianto, I. Ghozali, C. Fatichah, and D. Purwitasari, “Deep Learning Approaches for Multi-Label Incidents
Classification from Twitter Textual Information,” Journal of Information Systems Engineering and Business Intelligence, vol. 8, no. 1,
pp. 31–41, Apr. 2022, doi: 10.20473/jisebi.8.1.31-41.
Z. Parveen and M. P. Quadri, “Classification and Prediction of Student Academic Performance using Machine Learning A Review,”
International Journal of Computer Sciences and Engineering, vol. 7, no. 3, pp. 607–614, Mar. 2019, doi: 10.26438/ijcse/v7i3.607614.
DOI: https://doi.org/10.30591/jpit.v10i1.8180
Refbacks

This work is licensed under a Creative Commons Attribution 4.0 International License.
JPIT INDEXED BY
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | |
This work is licensed under a Creative Commons Attribution 4.0 International License.