Analysis of Electronic Wallet User Sentiment on Twitter (x) Social Media Using the Naïve Bayes Classifier Algorithm

azhar basir

Abstract


 Electronic wallets are one of the most popular payment methods in Indonesia with the number of users increasing significantly in recent years, including DANA, GoPay, and LinkAja. Along with the increasing number of users, the need to analyze user opinions and comments on social media, especially on Twitter (X) is also increasing. This study uses an experimental method with data collection from Twitter (X) using data crawling techniques. The dataset used is 1,500 data with 1 attribute. This study aims to analyze user sentiment towards electronic wallets using the Naive Bayes Classifier algorithm with the Python programming language. The results of the study showed that DANA had a negative sentiment of 16.6%, a neutral sentiment of 9.0%, and a positive sentiment of 74.4%. Followed by GoPay with a negative sentiment of 9.4%, a neutral sentiment of 11.4%, and a positive sentiment of 79.2%. Meanwhile, LinkAja had the lowest negative sentiment of 8%, with a neutral sentiment of 12.2% and a positive sentiment of 79.8%. The implementation of the Naive Bayes Classifier algorithm achieved an accuracy rate of 72% for DANA, 88% for GoPay, and 88%, for LinkAja.

Keywords


Electronic Wallet, Sentiment Analysis, Twitter (X), Naïve Bayes Classifier

Full Text:

References


Z. A. Diekson, M. R. B. Prakoso, M. S. Q. Putra, M. S. A. F. Syaputra, S. Achmad, and R. Sutoyo, “Sentiment analysis for customer

review: Case study of Traveloka,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 682–690. doi: 10.1016/j.procs.2022.12.184.

Hertina et al., “Data mining applied about polygamy using sentiment analysis on twitters in indonesian perception,” Bulletin of Electrical

Engineering and Informatics, vol. 10, no. 4, pp. 2231–2236, Aug. 2021, doi: 10.11591/EEI.V10I4.2325.

F. A. 2 Pablo A Henríquez 1, “Analyzing digital societal interactions and sentiment classification in Twitter (X) during critical events in

Chile,” national library of medicine, 2024.

V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in

Indonesia using Naïve Bayes, decision tree, and random forest algorithm,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 765–

doi: 10.1016/j.procs.2019.11.181.

P. H. Prastyo, A. S. Sumi, A. W. Dian, and A. E. Permanasari, “Tweets Responding to the Indonesian Government’s Handling of COVID-

: Sentiment Analysis Using SVM with Normalized Poly Kernel,” Journal of Information Systems Engineering and Business

Intelligence, vol. 6, no. 2, p. 112, Oct. 2020, doi: 10.20473/jisebi.6.2.112-122.

M. A. Fauzi, “Random forest approach fo sentiment analysis in Indonesian language,” Indonesian Journal of Electrical Engineering and

Computer Science, vol. 12, no. 1, pp. 46–50, Oct. 2018, doi: 10.11591/ijeecs.v12.i1.pp46-50.

L. K. Ramasamy, S. Kadry, and S. Lim, “Selection of optimal hyper-parameter values of support vector machine for sentiment analysis

tasks using nature-inspired optimization methods,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 1, pp. 290–298, Feb.

, doi: 10.11591/eei.v10i1.2098.

M. Isnan, G. N. Elwirehardja, and B. Pardamean, “Sentiment Analysis for TikTok Review Using VADER Sentiment and SVM Model,”

in Procedia Computer Science, Elsevier B.V., 2023, pp. 168–175. doi: 10.1016/j.procs.2023.10.514.

Y. Mao, Q. Liu, and Y. Zhang, “Sentiment analysis methods, applications, and challenges: A systematic literature review,” Apr. 01, 2024,

King Saud bin Abdulaziz University. doi: 10.1016/j.jksuci.2024.102048.

Jurnal Informatika: Jurnal pengembangan IT

Vol. xx, No. x, Bulan 20xx

Azhar Basir: Analysis of Electronic Wallet….

N. I. Abas and D. Puspawati, “E-Wallet Adoption in Continuance Intention As A e-Payment System for Live Streaming Shopping,” in

Procedia Computer Science, Elsevier B.V., 2024, pp. 1137–1144. doi: 10.1016/j.procs.2024.03.109.

A. Daragmeh, J. Sági, and Z. Zéman, “Continuous intention to use e-wallet in the context of the covid-19 pandemic: Integrating the health

belief model (hbm) and technology continuous theory (tct),” Journal of Open Innovation: Technology, Market, and Complexity, vol. 7,

no. 2, Jun. 2021, doi: 10.3390/joitmc7020132.

D. Locatelli, G. Damo, and D. Nozza, “A Cross-Lingual Study of Homotransphobia on Twitter,” 2023. [Online]. Available:

https://www.ustranssurvey.org/reports

Y. Shang, “Prevention and detection of DDOS attack in virtual cloud computing environment using Naive Bayes algorithm of machine

learning,” Measurement: Sensors, vol. 31, Feb. 2024, doi: 10.1016/j.measen.2023.100991.

R. A. Sagum, P. A. C. Clacio, R. E. R. Cayetano, and A. D. F. Lobrio, “Philippine Court Case Summarizer using Latent Semantic

Analysis,” in Procedia Computer Science, Elsevier B.V., 2023, pp. 474–481. doi: 10.1016/j.procs.2023.10.548.

H. Cam, A. V. Cam, U. Demirel, and S. Ahmed, “Sentiment analysis of financial Twitter posts on Twitter with the machine learning

classifiers,” Heliyon, vol. 10, no. 1, Jan. 2024, doi: 10.1016/j.heliyon.2023.e23784.

M. Qorib, T. Oladunni, M. Denis, E. Ososanya, and P. Cotae, “Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine

learning on COVID-19 vaccination Twitter dataset,” Expert Syst Appl, vol. 212, Feb. 2023, doi: 10.1016/j.eswa.2022.118715.

M. Bilal, H. Israr, M. Shahid, and A. Khan, “Sentiment classification of Roman-Urdu opinions using Naïve Bayesian, Decision Tree and

KNN classification techniques,” Journal of King Saud University - Computer and Information Sciences, vol. 28, no. 3, pp. 330–344, Jul.

, doi: 10.1016/j.jksuci.2015.11.003.

B. M. Susanto, “Naïve Bayes Decision Tree Hybrid Approach for Intrusion Detection System,” Buletin Teknik Elektro dan Informatika

(Bulletin of Electrical Engineering and Informatics, vol. 2, no. 3, pp. 225–232, 2013.

A. A. S. E. D. M. H. N. A. P. and C. P. M. S. A. V. D. Sano, “Proposing a Visualized Comparative Review Analysis Model on Tourism

Domain Using Naïve Bayes Classifier,” pp. 482–489, 2023.

N. M. N. Mathivanan, N. A. Nor, and R. M. Janor, “Improving classification accuracy using clustering technique,” Bulletin of Electrical

Engineering and Informatics, vol. 7, no. 3, pp. 465–470, Sep. 2018, doi: 10.11591/eei.v7i3.1272.

B. Valarmathi, N. S. Gupta, V. Karthick, T. Chellatamilan, K. Santhi, and D. Chalicheemala, “Sentiment Analysis of Covid-19 Twitter

Data using Deep Learning Algorithm,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 3397–3407. doi:

1016/j.procs.2024.04.320.

H. Huang, A. A. Zavareh, and M. B. Mustafa, “Sentiment Analysis in E-Commerce Platforms: A Review of Current Techniques and

Future Directions,” 2023, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2023.3307308.

N. Pavitha et al., “Movie recommendation and sentiment analysis using machine learning,” Global Transitions Proceedings, vol. 3, no.

, pp. 279–284, Jun. 2022, doi: 10.1016/j.gltp.2022.03.012.

[24] J. Junifer Pangaribuan and O. Putra Barus, “Implementasi Algoritma Tf-Idf Dan Support Vector Machine Terhadap Analisis

Pendeteksi Komentar Cyberbullying Di Media Sosial Tiktok,” Jurnal Device, vol. 13, no. 1, pp. 124–134.

S. R. Anggraeni, N. A. Ranggianto, I. Ghozali, C. Fatichah, and D. Purwitasari, “Deep Learning Approaches for Multi-Label Incidents

Classification from Twitter Textual Information,” Journal of Information Systems Engineering and Business Intelligence, vol. 8, no. 1,

pp. 31–41, Apr. 2022, doi: 10.20473/jisebi.8.1.31-41.

Z. Parveen and M. P. Quadri, “Classification and Prediction of Student Academic Performance using Machine Learning A Review,”

International Journal of Computer Sciences and Engineering, vol. 7, no. 3, pp. 607–614, Mar. 2019, doi: 10.26438/ijcse/v7i3.607614.




DOI: https://doi.org/10.30591/jpit.v10i1.8180

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.