Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier
Abstract
References
APJII, “Penetrasi & Perilaku Pengguna Internet Indonesia 2017,” Asos. Penyelenggara Jasa Internet Indones., pp. 1–39, 2017.
S. Kemp, “Digital in 2018 in Southeast Asia,” We Are Soc., p. 362, 2018.
PT Perusahaan Listrik Negara (Persero), Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Perserp) 2015 - 2024. Jakarta, 2015.
W. He, S. Zha, and L. Li, “Social media competitive analysis and text mining: A case study in the pizza industry,” Int. J. Inf. Manage., vol. 33, no. 3, pp. 464–472, 2013.
R. Feldman and J. Sanger, The Text Mining Handbook. New York: Cambridge University Press, 2007.
M. Kanakaraj and R. M. R. Guddeti, “Performance analysis of Ensemble methods on Twitter sentiment analysis using NLP techniques,” Proc. 2015 IEEE 9th Int. Conf. Semant. Comput. IEEE ICSC 2015, pp. 169–170, 2015.
P. K. Gajakosh, G. Tushar, and S. Rajashri, “Opinion Mining for Multi-Mix Languages Hotel Review by using Fuzzy Sets,” Int. Conf. Adv. Sci. Technol. 2015 (ICAST 2015) First, p. 4, 2015.
C. C. Aggarwal and C. X. Zhai, A Survey of Text Classification Algorithms. In: Aggarwal C., Zhai C. (eds) Mining Text Data. Boston, MA: Springer, 2012.
P. Tripathi, S. K. Vishwakarma, and A. Lala, “Sentiment Analysis of English Tweets Using RapidMiner,” 2015 Int. Conf. Comput. Intell. Commun. Networks, pp. 668–672, 2015.
S. K and D. R, “Designing a Machine Learning Based Software Risk Assessment Model Using Naïve Bayes Algorithm,” TAGA J. Graph. Technol., vol. 14, pp. 3141–3147, 2018.
N. Öztürk and S. Ayvaz, “Sentiment analysis on Twitter: A text mining approach to the Syrian refugee crisis,” Telemat. Informatics, vol. 35, no. 1, pp. 136–147, 2018.
I. Zulfa and E. Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 187, 2017.
B. Liu, Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, 2012.
A. D’Andrea, F. Ferri, P. Grifoni, and T. Guzzo, “Approaches, Tools and Applications for Sentiment Analysis Implementation,” Int. J. Comput. Appl., vol. 125, no. 3, pp. 26–33, 2015.
S. B. Bhonde and J. R. Prasad, “Sentiment Analysis - Methods, Applications and Challenges,” Int. J. Electron. Commun. Comput. Eng., vol. 6, no. 6Online, pp. 2249–71, 2015.
M. Fernández-Gavilanes, T. Álvarez-López, J. Juncal-Martínez, E. Costa-Montenegro, and F. Javier González-Castaño, “Unsupervised method for sentiment analysis in online texts,” Expert Syst. Appl., vol. 58, pp. 57–75, 2016.
Z. H. Deng, K. H. Luo, and H. L. Yu, “A study of supervised term weighting scheme for sentiment analysis,” Expert Syst. Appl., vol. 41, no. 7, pp. 3506–3513, 2014.
M. Lan, C. L. Tan, J. Su, and Y. Lu, “Supervised and Traditional Term Weighting Methods for Automatic Text Categorization,” Pattern Anal. Mach. Intell. IEEE Trans., vol. 31, no. 4, pp. 721–735, 2009.
R. Moraes, J. F. Valiati, and W. P. Gavião Neto, “Document-level sentiment classification: An empirical comparison between SVM and ANN,” Expert Syst. Appl., vol. 40, no. 2, pp. 621–633, 2013.
P. K. Singh and M. Shahid Husain, “Methodological Study Of Opinion Mining And Sentiment Analysis Techniques,” Int. J. Soft Comput., vol. 5, no. 1, pp. 11–21, 2014.
E. Rish, “An empirical study of the naive Bayes classifier,” IJCAI-01 Work. Empir. Methods AI, no. January 2001, 2001.
N. Yunita, “ANALISIS SENTIMEN BERITA ARTIS DENGAN MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE DAN PARTICLE SWARM OPTIMIZATION,” J. Sist. Inf. STMIK Antar Bangsa, vol. V, no. 2, pp. 104–112, 2016.
A. Amolik, N. Jivane, M. Bhandari, and M. Venkatesan, “Twitter sentiment analysis of movie reviews using machine learning technique,” Int. J. Eng. Technol., vol. 7, no. 6, pp. 2038–2044, 2016.
T. T. Wong, “Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation,” Pattern Recognit., vol. 48, no. 9, pp. 2839–2846, 2015.
R. GmbH, RapidMiner 8 Operator Reference Manual. RapidMiner GmbH, 2018.
DOI: https://doi.org/10.30591/jpit.v3i3.977
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License.
JPIT INDEXED BY
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | |
This work is licensed under a Creative Commons Attribution 4.0 International License.