Identifikasi Pola Kepuasan Mahasiswa Terhadap Proses Pembelajaran Menggunakan Algoritma K-Means Clustering.

Heru Purnomo Kurniawan, Lia Farhatuaini

Abstract


Student satisfaction levels with the learning experience at higher education institutions often exhibit variability. This study aims to comprehend the varying degrees of student satisfaction at Institut Agama Islam Negeri (IAIN) Syekh Nurjati Cirebon. Employing the K-Means clustering method, this research categorizes students based on their satisfaction levels. The survey data analyzed includes 20 dimensions of Service Quality criteria evaluated by students, with these 20 dimensions grouped into five key aspects of Service Quality assessment: tangible, reliability, responsiveness, assurance, and empathy. The analysis reveals three distinct groups of students with differing satisfaction levels: neutral/fair (class 1), agree/good (class 2), and strongly agree/excellent (class 3). Comparisons among these groups highlight the diversity of student perceptions. Furthermore, an examination of the distribution of evaluations within each class uncovers differing priorities in assessment criteria. These research findings offer insights into the spectrum of student satisfaction levels and pinpoint areas warranting further attention in each class. Such insights can inform the development of policies and strategies aimed at enhancing the quality of learning experiences at IAIN Syekh Nurjati Cirebon.

Keywords


K-Means Clustering, Service Quality, Student Satisfaction; Policy Development

Full Text:

References


A. M. Aleixo, S. Leal, and U. M. Azeiteiro, “Conceptualization of sustainable higher education institutions, roles, barriers, and challenges for sustainability: An exploratory study in Portugal,” J Clean Prod, vol. 172, pp. 1664–1673, 2018.

G. Santos, C. S. Marques, E. Justino, and L. Mendes, “Understanding social responsibility’s influence on service quality and student satisfaction in higher education,” J Clean Prod, vol. 256, p. 120597, 2020.

G. D. Kuh, “Assessing what really matters to student learning inside the national survey of student engagement,” Change: The magazine of higher learning, vol. 33, no. 3, pp. 10–17, 2001.

L. Petruzzellis, A. M. d’Uggento, and S. Romanazzi, “Student satisfaction and quality of service in Italian universities,” Managing service quality: An international journal, vol. 16, no. 4, pp. 349–364, 2006.

A. R. Almasri, N. A. Yahaya, and S. S. Abu-Naser, “Instructor Performance Modeling For Predicting Student Satisfaction Using Machine Learning-Preliminary Results,” J Theor Appl Inf Technol, vol. 100, no. 19, pp. 5481–5496, 2022.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and implementation,” IEEE Trans Pattern Anal Mach Intell, vol. 24, no. 7, pp. 881–892, 2002.

F. O. Twum and W. K. Peprah, “The impact of service quality on students’ satisfaction,” International Journal of Academic Research in Business and Social Sciences, vol. 10, no. 10, pp. 169–181, 2020.

A. P. Nanda, D. E. H. Pramono, and S. Hartati, “Menentukan Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan Metode Algoritma K-Means,” Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika), vol. 11, no. 1, pp. 23–28, 2020.

B. Parlambang and F. Fauziah, “Implementasi Algoritma K-means Dalam Proses Penilaian Kuesioner Kepada Dosen Guna Mendukung Kepuasan Mahasiswa Terhadap Dosen,” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 25, no. 2, pp. 161–173, 2020.

T. A. Babu and D. Nababan, “Analisis Tingkat Kepuasan Mahasiswa Terhadap Perkuliahan Daring Di Era Covid 19 Menggunakan K-Means Clustering,” Journal of Information and Technology, vol. 3, no. 2, pp. 31–36, 2023.

D. Desyanti, Y. Yusrizal, and F. Sari, “Implementasi Algoritma K-Modes Untuk Mengukur Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Daring,” Building of Informatics, Technology and Science (BITS), vol. 3, no. 4, pp. 719–727, 2022.

K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91–99, 2022.

A. Kassambara, Practical guide to cluster analysis in R: Unsupervised machine learning, vol. 1. Sthda, 2017.

A. Saxena et al., “A review of clustering techniques and developments,” Neurocomputing, vol. 267, pp. 664–681, 2017.

T. S. Madhulatha, “Comparison between k-means and k-medoids clustering algorithms,” in International Conference on Advances in Computing and Information Technology, 2011, pp. 472–481.

J. Pérez-Ortega, N. N. Almanza-Ortega, A. Vega-Villalobos, R. Pazos-Rangel, C. Zavala-D’iaz, and A. Mart’inez-Rebollar, “The K-means algorithm evolution,” Introduction to data science and machine learning, pp. 69–90, 2019.

P. Gançarski, T.-B.-H. Dao, B. Crémilleux, G. Forestier, and T. Lampert, “Constrained clustering: Current and new trends,” A Guided Tour of Artificial Intelligence Research: Volume II: AI Algorithms, pp. 447–484, 2020.

G. Ogbuabor and F. N. Ugwoke, “Clustering algorithm for a healthcare dataset using silhouette score value,” AIRCC’s International Journal of Computer Science and Information Technology, pp. 27–37, 2018.

M. Shutaywi and N. N. Kachouie, “Silhouette analysis for performance evaluation in machine learning with applications to clustering,” Entropy, vol. 23, no. 6, p. 759, 2021.




DOI: https://doi.org/10.30591/jpit.v9i2.6740

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

JPIT INDEXED BY

  
  

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.